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1. Introduction. Throughout this paper G is a finite group.

1.1. Definitions and main result. Let Ω be a subset of the group G. A non-
commuting subset of Ω is a subset N of Ω such that

x, y ∈ N =⇒ xy �= yx.

We define δ(Ω) to be the maximum possible cardinality of a non-commuting
subset of Ω. A non-commuting subset that has cardinality δ(Ω) will be called
a maximal non-commuting subset of Ω.

An abelian cover of Ω is a set C of abelian subgroups of G whose union
contains Ω. We define Δ(Ω) to be the minimum possible cardinality of an
abelian cover of Ω. An abelian cover that has cardinality Δ(Ω) will be called
a minimal abelian cover of Ω.

A simple application of the pigeon-hole principle yields the following fact:

Lemma 1.1. For any finite group G and a subset Ω ⊆ G, δ(Ω) ≤ Δ(Ω).

In this paper we study the case where G is a finite alternating group; we are
interested in ascertaining when δ(G) = Δ(G). Our main result gives almost
complete information.
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Theorem 1.2. Let An be the alternating group on n letters, with n a positive
integer.
(1) If n ≤ 11 or n = 15, then δ(An) = Δ(An);
(2) If n = 12, 16, or 18 or n ≥ 20, then δ(An) �= Δ(An).

1.2. The commuting graph. The definitions just given can be recast in terms
of a particular graph, as follows. Let G be a group and Ω ⊆ G. Then the
commuting graph of Ω, denoted Γ(Ω), is the graph whose vertex set is Ω and
with vertices connected if and only if they commute. Now a cover of Ω by
abelian subgroups of G corresponds to a cover of Γ(Ω) by cliques, and so Δ(Ω)
is the clique-covering number of Γ(Ω). Similarly, a non-commuting subset of
Ω is an independent set in Γ(Ω), and δ(Ω) is the independence number of the
graph.

1.3. Notation. Our notation is entirely standard. The support of a permutation
g ∈ Sn is the set S of those elements j in {1, 2, 3, . . . , n} satisfying g(j) �= j.
Two permutations g, h ∈ Sn are disjoint if they have disjoint supports. Let
n1, n2, . . . , nr be positive integers such that n1 + n2 + · · · + nr ≤ n. We say
that a permutation g ∈ Sn has cycle type n1−n2−···−nr if g can be written as
a product of disjoint cycles g = g1g2 . . . gr, where the cycle gi is an ni-cycle.

For g ∈ G, we write ClG(g) for the conjugacy class of g in G (we will omit
the subindex G when the group G is clear from the context.) Also we will write
CG(g) for the centralizer of g in G.

1.4. Context. The following result of Brown [5,6] is a starting point for our
research.

Theorem 1.3. Let Sn be the symmetric group on n letters, with n a positive
integer.
(1) If n ≤ 7, n = 9, or n = 11, then δ(Sn) = Δ(Sn);
(2) If n = 8, n = 13, or n ≥ 15, then δ(Sn) �= Δ(Sn).

One can view our main result, Theorem 1.2, as an analogue of Theorem 1.3
for the alternating groups. The study of groups via their commuting graph
goes back many years. Perhaps the most famous result in this line of study
concerns groups that are not finite: in 1976, Neumann answered a question of
Erdős by proving that if all non-commuting sets in a group G are finite, then
|G : Z(G)| is finite, see [8].

The question of whether or not δ(G) = Δ(G) has been studied by vari-
ous authors for various groups G (see, for instance, [1–4]). To our knowledge,
Theorem 1.2 is the first result that asserts that δ(G) �= Δ(G) for some finite
simple group G.

2. Background. In this section we record some basic results and definitions
that will be needed in the sequel. The lemmas that we will need are little more
than observations. The proof of the first is left to the reader.

Lemma 2.1. There exists an abelian cover of G of size Δ(G) and consisting
entirely of maximal abelian subgroups.
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Lemma 2.2. Let g ∈ G, and suppose that CG(g) is abelian. Then
(1) CG(g) is a maximal abelian subgroup of G and it is the unique maximal

abelian subgroup of G that contains g;
(2) There exists an abelian cover of G of size Δ(G) containing CG(g).

Proof. Let A be a maximal abelian subgroup of G that contains CG(g). In
particular, A contains g and so, since A is abelian, A ≤ CG(g). Thus A = CG(g)
and (1) is proved. Item (2) is a consequence of Lemma 2.1 and (1). �

Now we need a number of definitions; the ensuing lemmas will highlight
their significance. Let Ca(G) be the set of all the abelian centralizers in G,
Ya(G) its union, and Yb(G) the complement of Ya(G). Hence

Ca(G) = {X ≤ G | X is abelian, and X = CG(g) for some g ∈ G};

Ya(G) =
⋃

X∈Ca(G)

X; Yb(G) = G\Ya(G).

We remark that both Ya(G) and Yb(G) are unions of conjugacy classes of G.
Next, for every element X ∈ Ca(G), choose an element gX ∈ G such that

CG(gX) = X. Now define

Na(G) = {gX | X ∈ Ca(G)}.

We caution that the set Na(G) is not uniquely defined, since there may be
more than one choice of gX for any given X ∈ Ca(G). In what follows we will
refer to ‘a set Na(G)’, by which we will mean a set constructed in the given
way. For all of the above definitions—Ca(G), Ya(G), Yb(G), Na(G)—when the
group G is obvious from the context, we may drop the (G) from the name.
Thus, for example, we will write Ca for Ca(G).

The next two lemmas connect the above definitions; the first is immediate.

Lemma 2.3. The set Ca(G) is an abelian cover of Ya(G), and a set Na(G) is
a non-commuting subset of Ya(G). In particular, δ(Ya(G)) = Δ(Ya(G)).

Lemma 2.4. (1) There is an abelian cover of G of size Δ(G) for which Ca(G)
is a subset.

(2) Let X be a set Na(G). There is a non-commuting subset of G of size δ(G)
for which X is a subset.

Proof. For (1) take a cover of maximal abelian subgroups (which we can do by
Lemma 2.1). Now take a set Na(G) and observe that, by Lemma 2.2 (1), this
set must be covered by Ca(G). For (2), suppose that N is a non-commuting
subset of G and let V = N ∩ Ya. Clearly |V | ≤ δ(Ya(G)) = |X|, since Ya(G)
is covered by δ(Ya(G)) abelian subgroups (Lemma 2.3). Thus if we remove V
from N and put X in its place, then N will not have diminished in size. What
is more, by construction, N is still non-commuting (since any element of X
does not commute with any element outside Ya). �

Lemma 2.5. A group G has an abelian cover of size δ(G) if and only if
Δ(Yb(G)) = δ(Yb(G)).
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Proof. Suppose, first, that G has an abelian cover A of size δ(G). By Lemma 2.4,
we can assume that Ca is a subset of A. Let N be a non-commuting subset of
G of size δ(G) then there is a subset, Na, of N of size |Ca| whose elements lie
inside elements of Ca.

Now let Nb = N\Na and Cb = A\Ca. Then Nb is a non-commuting subset
of Yb, Cb is an abelian cover of Yb, and |Nb| = |Cb|, as required.

For the converse, suppose that Δ(Yb) = δ(Yb), let Nb be a maximal non-
commuting subset of Yb, and let Cb be a minimal abelian cover of Yb. Now
let X be a set Na(G) and observe that X ∪ Nb is a maximal non-commuting
subset of G and that Ca ∪ Cb is a minimal abelian cover of G of size δ(G). �

We close by making an elementary remark. Suppose that G is a group for
which δ(G) = Δ(G), that N is a non-commuting subset of G of size δ(G),
and that C is an abelian cover of G of size Δ(G). Then every element of C
contains a unique element of N (indeed, the same is true for G replaced in our
suppositions by any subset Ω of G).

3. Results on alternating groups. We will make heavy use of the following
elementary lemma, a proof of which can be found in [6].

Lemma 3.1. Let σ be a product of nontrivial disjoint cycles σ1, . . . , σk no two
of which have the same length. Then every element of Sn which commutes with
σ is a product τρ, where τ is a product of powers of the cycles σi, 1 ≤ i ≤ k
and ρ and σ have disjoint support.

The treatment that follows is split into three cases – when n is even, when
n is odd, and when n is small. The strategy in the first two cases is identical
and strongly resembles the method of Brown [6]. However some of the details
differ and so, for clarity, the cases are written separately.

3.1. n is even. We assume here that n is even, and let

σ = (4, 5)(6, 7, 8)(9, 10, . . . , n) ∈ An.

We are interested in the set ClAn
(σ), the conjugacy class of σ in An, and we

note first that an element of ClAn
(σ) does not have an abelian centralizer in

An.

Lemma 3.2. Suppose that n = 12 or n is even and n ≥ 16, g ∈ ClAn
(σ), K

is a maximal abelian subgroup of An containing g, and h is an element of K.
Then one of the following occurs:
(1) h lies in an abelian centralizer.
(2) h has cycle type 2−3−d−d−···−d︸ ︷︷ ︸

k

where 1 ≤ d, k ≤ n−8, and dk = n−8.

Proof. It is sufficient to prove the result for the case g = σ = (4, 5)(6, 7, 8)
(9, . . . , n). Now we write a = (4, 5), b = (6, 7, 8), c = (9, 10, . . . , n) and observe
that g = abc.

The restrictions on n mean that we can apply Lemma 3.1 to the element
g, and conclude that every permutation h that commutes with g will be of the
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form aibjckρ where 0 ≤ i ≤ 1, 0 ≤ j ≤ 2, 0 ≤ k ≤ n − 8, and the support of ρ
is a subset of {1, 2, 3}.

Observe that h will satisfy condition (2) of the lemma if and only if one of
the following holds:

• i = 1, j = 1, and ρ = (1);
• i = 1, j = 2, and ρ = (1);
• i = 1, j = 0, and ρ is a 3-cycle;
• i = 0, j = 1, and ρ is a 2-cycle.

In the first column below, we list a representative h of every Sn-conjugacy
class that has a non-trivial intersection with K and does not satisfy condition
(2) of the lemma. In the second column we list a permutation f that, provided
n �= 12, has abelian centralizer and which commutes with h.

Permutation h Permutation f

(4, 5)(9, . . . , n)k (1, 6, 2, 7, 3, 8)(9, . . . , n)
(6, 7, 8)(9, . . . , n)k (1, 2, 3, 4)(6, 7, 8)(9, . . . , n).
(1, 2)(4, 5)(9, . . . , n)k (1, 4, 2, 5)(6, 7, 8)(9, . . . , n)
(1, 2, 3)(6, 7, 8)(9, . . . , n)k (1, 6, 2, 7, 3, 8)(9, . . . , n)
(1, 2)(4, 5)(6, 7, 8)(9, . . . , n)k (1, 4, 2, 5)(6, 7, 8)(9, . . . , n)
(1, 2, 3)(4, 5)(6, 7, 8)(9, . . . , n)k (1, 6, 2, 7, 3, 8)(9, . . . , n)

We caution that not all of the permutations h listed above lie in K since,
for certain values of k, the listed permutation will not be even. However the
given list certainly includes all of the required permutations. Furthermore it
is easy to check, using Lemma 3.1, that CG(f) is indeed abelian.

We must deal with the case when n = 12. Again, we list a representative
h of every S12-conjugacy class that has a non-trivial intersection with K and
does not satisfy condition (2) of the lemma. Again, in the second column we
list a permutation f that has abelian centralizer and which commutes with h.

Permutation h Permutation f

(4, 5)(9, 10, 11, 12) (1, 6, 2, 7, 3, 8)(9, 10, 11, 12)
(6, 7, 8)(9, 11)(10, 12) (1, 2, 3, 4, 5)(6, 7, 8)(9, 11)(10, 12)
(1, 2)(4, 5)(9, 11)(10, 12) (3, 6, 7, 8)(1, 9, 4, 10, 2, 11, 5, 12)
(1, 2, 3)(6, 7, 8)(9, 11)(10, 12) (1, 6, 2, 7, 3, 8)(9, 10, 11, 12)
(1, 2)(4, 5)(6, 7, 8)(9, 11)(10, 12) (6, 7, 8)(1, 4, 9, 2, 5, 11)(10, 12)
(1, 2, 3)(4, 5)(6, 7, 8)(9, 10, 11, 12) (1, 6, 2, 7, 3, 8)(9, 10, 11, 12)

A quick computation checks that the centralizer for (1, 2, 3, 4, 5)(6, 7, 8)
(9, 11)(10, 12) is abelian, and by Lemma 3.1 the rest are obviously abelian as
well. �

We need an easy lemma concerning permutations that satisfy condition (2)
of the previous lemma.
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Lemma 3.3. Suppose that n = 12 or n is even and n ≥ 16 and that h ∈ An

has cycle type 2−3−d−d−···−d︸ ︷︷ ︸
k

where 1 ≤ d, k ≤ n − 8, and dk = n − 8. Then

CAn
(h) contains a permutation f with cycle type 2−3−(n−8) and, moreover,

CAn
(f) ≤ CAn

(h).

Proof. Write h = abc1 where a is a 2-cycle, b is a 3-cycle, c1 is a product of
k d-cycles, and a, b, and c1 have disjoint support. Then c1 is a power of an
(n−8)-cycle, c, and f = abc ∈ CAn

(h) has cycle type 2−3−(n−8).
Now the restrictions on n mean that we can apply Lemma 3.1 to the element

f to conclude that any element f1 that commutes with f will be of the form
aibjckρ where 0 ≤ i ≤ 1, 0 ≤ j ≤ 2, 0 ≤ k ≤ n − 8, and ρ and f have disjoint
supports. Now one can check directly that such an element commutes with h,
and we conclude that CAn

(f) ≤ CAn
(h). �

Proposition 3.4. Suppose that n = 12 or n is even and n ≥ 16. Then δ(An) �=
Δ(An).

Proof. Assume, for a contradiction, that δ(An) = Δ(An). Let E be a maximal
set of non-commuting elements in An. By Lemma 2.4, we can (and do) assume
that E contains a set Na(An). Let A be a minimal abelian cover of An. By
Lemma 2.4, we can (and do) assume that A contains Ca. As before, the set
ClAn

(σ) is the conjugacy class of σ = (1, 2)(3, 4, 5)(9, 10, . . . , n) in An, and
every element in ClAn

(σ) has cycle type 2 − 3 − (n − 8).
Now let γ be a fixed (n − 8)-cycle. For g ∈ ClAn

(σ), write Long(g) for the
(n − 8)-cycle that forms part of the cycle decomposition of g. Now define

Clγ := {g ∈ ClAn
(σ) | Long(g) = γ};

Aγ := {A ∈ A | h ∈ A for some h ∈ Clγ};
Eγ := E ∩ Clγ .

Since δ(An) = Δ(An), every element of A contains an element of E. Let
A ∈ Aγ , and let h be the unique element in A ∩ E. Then, since A contains
Ca, Lemma 3.2 implies that h has cycle type 2 − 3 − d − d − · · · − d︸ ︷︷ ︸

k

where

1 ≤ d, k ≤ n − 8, and dk = n − 8. Now Lemma 3.3 implies that we can replace
h in E by an element f ∈ A with cycle type 2 − 3 − (n − 8), and E will still
be non-commuting. Hence we can (and do) assume that for every A ∈ Aγ , the
unique element in A ∩ E is of type 2 − 3 − (n − 8).

Since
⋃

A∈Aγ
A ⊇ Clγ , we conclude that |Eγ | = |Aγ | and Eγ is precisely

the set of elements in E that lie in some element of Aγ .
Now one can check, firstly, that |Clγ | = 1120 and, secondly, that if Ω ⊂ Clγ

is a set of commuting permutations, then |Ω| ≤ 4. So every element A ∈ Aγ

contains at most 4 permutations of the given type and, in consequence, |Aγ | ≥
1120/4 = 280. Thus |Eγ | ≥ 280.

Now consider B, the set of groups generated by 4 disjoint cycles a, b, c, γ
where a is a 2−cycle, both b and c are 3−cycles and γ is as above. We can
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easily see that B is an abelian cover of Cγ . What is more |B| = 280. Therefore
|Eγ | ≤ 280 and so |Eγ | = 280 = |Aγ |.

Now let A ∈ Aγ . Since |Aγ | = 280 and A contains at most 4 elements of
Clγ which has size 1120, we see that A contains exactly 4 elements of Clγ . Let
g be an element of Clγ and write g = abγ where a is a 2-cycle, b is a 3-cycle,
and a, b, and γ are disjoint. One can easily check that g lies in two maximal
abelian subgroups:

• A1 = 〈a, b, γ, ρ1〉 where ρ1 is a 2-cycle that is disjoint from a, b, and γ;
• A2 = 〈a, b, γ, ρ2〉 where ρ2 is a 3-cycle that is disjoint from a, b, and γ;

Now A1 contains 2 elements of Clγ , while A2 contains 4 elements of Clγ . We
conclude that A2 ∈ Aγ . It now follows that Aγ is equal to the set B, defined
in the previous paragraph.

Now observe that the following groups all lie in Aγ :

A1 := 〈(1, 2, 3), (4, 5, 6), (7, 8), γ〉; A2 := 〈(1, 2, 3), (5, 7, 8), (4, 6), γ〉;
A3 := 〈(5, 7, 8), (2, 4, 6), (1, 3), γ〉; A4 := 〈(2, 4, 6), (1, 3, 5), (7, 8), γ〉;
A5 := 〈(1, 3, 5), (6, 7, 8), (2, 4), γ〉; A6 := 〈(1, 2, 3), (4, 7, 8), (5, 6), γ〉;
A7 := 〈(4, 7, 8), (1, 5, 6), (2, 3), γ〉; A8 := 〈(2, 3, 4), (1, 5, 6), (7, 8), γ〉;
A9 := 〈(2, 3, 4), (6, 7, 8), (1, 5), γ〉.

Let ai be the unique element in Ai ∩ E for i = 1, . . . , 9. Without loss
of generality, we may assume that a1 = (1, 2, 3)(7, 8)γ. Now for a2 not to
commute with a1 it must be of the form (5, 7, 8)i(4, 6)γj , where i = 1, 2 and j
and n− 8 are coprime. Notice that the choice of i and j does not affect the set
of permutations in Clγ that commute with it. Thus, without loss of generality,
we may assume that a2 = (5, 7, 8)(4, 6)γ.

Following the same logic, we may take a3 = (2, 4, 6)(1, 3)γ, a4 = (1, 3, 5)
(7, 8)γ, and a5 = (6, 7, 8)(2, 4)γ. Now starting from the fact that a1 = (1, 2, 3)
(7, 8)γ and following the same logic as above, we can also deduce that a6 =
(4, 7, 8)(5, 6)γ, a7 = (1, 5, 6)(2, 3)γ, and a8 = (2, 3, 4)(7, 8)γ.

Now we find that we cannot choose a9 since any element we choose will
commute either with a8 = (2, 3, 4)(7, 8)γ or a5 = (6, 7, 8)(2, 4)γ. We have the
contradiction that we sought. �

3.2. n is odd. The case where n is odd will be proven in essentially the same
way as the even case but considering instead permutations of cyclic type 2−
3−8−(n−16) since the permutations of cyclic type 2−3−(n−8) are not in An

when n is odd. Let τ = (4, 5)(6, 7, 8)(9, 10, . . . , 16)(17, 18, . . . , n) ∈ An. We
consider the set ClAn

(τ) and observe, as before, that an element of ClAn
(τ)

does not have an abelian centralizer in An. We will have the same situation as
in the even case:

Lemma 3.5. Suppose that n is odd and n ≥ 21, g ∈ ClAn
(τ), K is a maximal

abelian group containing g, and h is an element of K. Then one of the following
occurs:
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(1) h lies in an abelian centralizer.
(2) h has cycle type 2−3−d−d−···−d︸ ︷︷ ︸

k

−e−e−···−e︸ ︷︷ ︸
j

where 1 ≤ d, k ≤ 8, 1 ≤

e,j ≤ n−16, dk = 8, and ej = n − 16.

Proof. Again, it is sufficient to choose

g = τ = (4, 5)(6, 7, 8)(9, 10, 11, 12, 13, 14, 15, 16)(17, 18, . . . , n)

and check that every permutation that commutes with g satisfies the lemma.
By Lemma 3.1, every permutation that commutes with g will be of the form
aibjckdlρ with a = (4, 5), b = (6, 7, 8), c = (9, 10, . . . , 16), d = (17, 18, . . . , n),
and the support of ρ is {1, 2, 3}.

As in the even case, we list a representative h of every Sn-conjugacy class
that has a non-trivial intersection with K, and does not satisfy condition (2)
of the lemma. In the second column we list a permutation f that, provided
n �= 19, has abelian centralizer and which commutes with h.

Permutation h Permutation f

(4, 5)(9, 10, . . . , 16)k(17, . . . , n)l (1, 6, 2, 7, 3, 8)(9, 10, . . . , 16)
(17, . . . , n)

(6, 7, 8)(9, 10, . . . , 16)k(17, . . . , n)l (1, 4, 2, 5)(6, 7, 8)(9, 10, . . . , 16)
(17, . . . , n)

(1, 2)(4, 5)(9, 10, . . . , 16)k(17, . . . , n)l (1, 4, 2, 5)(6, 7, 8)(9, 10, . . . , 16)
(17, . . . , n)

(1, 2, 3)(6, 7, 8)(9, 10, . . . , 16)k(17, . . . , n)l (1, 6, 2, 7, 3, 8)(9, 10, . . . , 16)
(17, . . . , n)

(1, 2)(4, 5)(6, 7, 8)(9, 10, . . . , 16)k(7, . . . , n)l (1, 4, 2, 5)(6, 7, 8)(9, 10, . . . , 16)
(17, . . . , n)

(1, 2, 3)(4, 5)(6, 7, 8)(9, 10, . . . , 16)k(17, . . . , n)l (1, 6, 2, 7, 3, 8)(9, 10, . . . , 16)
(17, . . . , n)

�

Now to deal with the permutations that satisfy condition (2), we will use
the next lemma. The statement and proof are analogous to Lemma 3.3, and
so the proof is omitted.

Lemma 3.6. Suppose that n is odd and n ≥ 21 and that h ∈ An has cycle
type 2−3−d−d−···−d︸ ︷︷ ︸

k

−e−e−···−e︸ ︷︷ ︸
j

where 1 ≤ d, k ≤ 8, 1 ≤ e, j ≤ n − 16,

dk = 8, and ej = n − 16. Then CAn
(h) contains a permutation f with cycle

type 2−3−8−(n−16) and, moreover, CAn
(f) ≤ CAn

(h).

Proposition 3.7. Suppose that n is odd and n ≥ 21. Then δ(An) �= Δ(An).

Proof. We do essentially the same thing as in the even case. Assume δ(An) =
Δ(An). Let E a non commuting subset of size δ(An) such that Na(An) ⊂ E.
Let Clγ,θ be the set of permutations of cycle type 2−3−8−(n−16) where the



Vol. 107 (2016) Abelian covers of alternating groups 143

8-cycle is a given cycle γ and the (n−16)-cycle is a given cycle θ, with the
support of γ and θ disjoint from {1, 2, 3, 4, 5, 6, 7, 8}. Define

Aγ,θ := {A ∈ A | h ∈ A for some h ∈ Clγ,θ};
Eγ,θ := E ∩ Clγ,θ.

Again, we see that to cover Clγ,θ we need at least 280 abelian groups, so that
|Eγ,θ| = |Aγ,θ| ≥ 280. By Lemma 3.5, these permutations will satisfy condition
(2) of said lemma. By Lemma 3.6, we can take these elements to be of the type
2−3−8−(n−16).

Now consider B to be the set of groups generated by five disjoint cycles
a, b, c, γ, θ where a is a 2-cycle, b and c are 3-cycles, and γ, θ as above. This is
a cover of Clγ,θ by 280 abelian groups, and so each one must contain exactly
one element of Eγ,θ.

Now we assume that (1, 2, 3)(7, 8)γθ is in Eγ,θ and consider in order the
representatives for

〈(1, 2, 3), (4, 5, 6), (7, 8), γ, θ〉; 〈(1, 2, 3), (5, 7, 8), (4, 6), γ, θ〉;
〈(5, 7, 8), (2, 4, 6), (1, 3), γ, θ〉; 〈(2, 4, 6), (1, 3, 5), (7, 8), γ, θ〉;
〈(1, 3, 5), (6, 7, 8), (2, 4), γ, θ〉; 〈(1, 2, 3), (4, 7, 8), (5, 6), γ, θ〉;
〈(4, 7, 8), (1, 5, 6), (2, 3), γ, θ〉; 〈(2, 3, 4), (1, 5, 6), (7, 8), γ, θ〉.

As before, we may assume that the following elements are in Eγ,θ:

(5, 7, 8)(4, 6)γθ; (2, 4, 6)(1, 3)γθ;
(1, 3, 5)(7, 8)γθ; (6, 7, 8)(2, 4)γθ;
(4, 7, 8)(5, 6)γθ; (1, 5, 6)(2, 3)γθ;
(2, 3, 4)(7, 8)γθ.

Now we must choose a representative for 〈(2, 3, 4), (6, 7, 8), (1, 5), γ, θ〉, but
we cannot do this since any element we choose will commute either with
(2, 3, 4)(7, 8)γθ or (6, 7, 8)(2, 4)γθ both of which are already in Eγ,θ. This con-
tradiction implies that δ(An) �= Δ(An). �
3.3. Small n. To complete our understanding of the situation in alternating
groups, we need to consider the cases n ≤ 11 and n = 13, 14, 15, 19. We will
not give full information here – to prove Theorem 1.2 it is sufficient to prove
that δ(An) = Δ(An) for n ≤ 11 and n = 15.

Lemma 3.8. Let n be a positive integer. Then every element of An lies in an
abelian centralizer if and only if n ≤ 7 or n = 10.

Moreover, if n = 8 or 9, then the only elements of An that do not lie in
an abelian centralizer have cycle type 4−4. Similarly, the only elements of A11

that do not lie in an abelian centralizer have cycle type 4−4−3.

Proof. The statements for n ≤ 11 can be checked by direct computation. Sup-
pose now that n ≥ 12. One can check that if n is even (resp. odd), then elements
of type 4−4−(n−9) (resp. 4−4−(n−8)) do not lie in an abelian centralizer in
An. �
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In the notation of Sect. 2, the lemma asserts that, for n ≤ 7 and n = 10, we
have Ya(An) = An. Now Lemma 2.3 immediately yields the following corollary.

Corollary 3.9. If n ≤ 7 or n = 10, then δ(An) = Δ(An).

The following lemmas will help us deal with some of the remaining cases.

Lemma 3.10. Let n be a positive integer with n ≥ 8, and let k and � be positive
integers such that n − (4k + �) < min(�, 2k) and � �= 2k, � �= 4k. Let σ, τ ∈ Sn

of cycle type 2k−2k−� such that στ = τσ. Then
(1) The �-cycle of τ is a power of the �-cycle of σ.
(2) The supports of σ and τ are equal.

Proof. For the first part, let r ∈ {1, 2, . . . , n}, we consider the orbit of r under
〈σ〉, this is Orbσ(r) = {σi(r) : i ∈ Z}. Suppose that |Orbσ(r)| = �. We have
that σiτ j(r) = τ jσi(r) for all i, j ∈ Z, and so

Orbσ(τ j(r)) = τ j (Orbσ(r)) ,

which implies that

Orbσ(τ j(r)) = Orbσ(r)

because there is only one orbit by σ of size �. We conclude that τ j(r) ∈ Orbσ(r)
for all j ∈ Z, and then Orbτ (r) ⊆ Orbσ(r).

Since τ has cycle type 2k−2k−� there are three possibilities: |Orbτ (r)| = �,
|Orbτ (r)| = 1, and |Orbτ (r)| = 2k. In the first case clearly Orbτ (r) = Orbσ(r),
so that both �-cycles have the same support. Lemma 3.1 then tells us that one
�-cycle must be the power of the other.

Suppose one of the other possibilities holds: then, if |Orbτ (r)| = 1, we
have that τ(r) = r, then τσj(r) = σjτ(r) = σj(r), so σj(r) is fixed by τ for
all j = 1, 2, 3, . . . , �, i.e. τ has � fixed points. But this is impossible, because
n − (4k + �) < �.

This means that we must have |Orbτ (r)| = 2k for all r’s in the support of
σ’s �-cycle. Since τ has cycle type 2k−2k−� the support of σ’s �-cycle must
be the same as the support for one of the 2k-cycles of σ or the union of the
supports of the two 2k-cycles of σ. So we have only two possibilities: � = 2k
or � = 4k, neither one possible by hypothesis. This ends the proof of the first
part.

For the second part, let r ∈ {1, 2, 3, . . . , n}, and suppose (for a contradic-
tion) that τ(r) = r and σ(r) �= r. This implies that Orbσ(r) must have 2k or
� elements. But now observe that, for all i,

τσi(r) = σiτ(r) = σi(r),

and we conclude that every element in Orbσ(r) is fixed by τ . But this is
impossible because τ only fixes n − (4k + �) elements. We conclude that every
element fixed by τ is fixed by σ. The same reasoning yields that every element
fixed by σ is fixed by τ and the result holds. �

Lemma 3.11. Let n a positive integer with n ≥ 8, and suppose that n = 4k for
some integer k. Let Λ be the conjugacy class of elements of cycle type 2k−2k
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in An. Then the commutator graph Γ(Λ) is disconnected. Furthermore if Ω is
(the vertex set of) a connected component of Γ(Λ), then Ω ⊂ H < Sn, with
H ∼= Sk � K4, where K4 is the normal Klein 4-subgroup of S4.

Proof. Let g = (1, 2, . . . , 2k)(2k + 1, 2k + 2, . . . , 4k) and consider the following
partition of the set {1, 2, . . . , n} into four subsets of size k:

{1, 3, 5, . . . , 2k − 1}, {2k + 1, 2k + 3, 2k + 5, . . . , 4k − 2},
{2, 4, 6, . . . , 2k}, {2k + 2, 2k + 4, 2k + 6, . . . , 4k}.

It is easy to see that this is the unique partition of type k−k−k−k on which
g acts as a double-transposition. What is more direct computation confirms
that the same is true of any element of Λ that commutes with g. Let Ω be the
connected component of Γ(Λ) that contains g. We conclude that Ω lies inside
the subgroup generated by all elements of Λ that act as double-transpositions
on Λ. All such elements lie inside H and we are done. �

Corollary 3.12. Let n be a positive integer, n ≥ 8, and let k, � be positive
integers such that n − (4k + �) < min(2k, �). Let Λ be the conjugacy class of
elements of cycle type 2k−2k−� in An. Then the commutator graph Γ(Λ) is
disconnected. Furthermore if Ω is (the vertex set of) a connected component
of Γ(Λ), then Ω ⊂ H < Sn with H ∼= (Sk � K4) × Z/�Z.

Proof. Let σ, τ ∈ Ω, the vertex set of a connected component of Γ(Λ). By
Lemma 3.10, the �-cycle of τ is a power of the �-cycle of σ, and their 2k−2k
parts have the same support. By Lemma 3.11, Ω ⊂ H with H ∼= (Sk � K4) ×
Z/�Z. �

Corollary 3.13. If n ≤ 11, then δ(An) = Δ(An).

Proof. By Corollary 3.9, we may (and we do) assume that n = 8, 9, or 11.
By Lemma 2.5, we must prove that δ(Yb(An)) = Δ(Yb(An)) in each case. By
Lemma 3.8, Yb(An) is equal to the conjugacy class of cycle type 4−4 for n = 8
or 9, and 4−4−3 for n = 11.

Now, by Corollary 3.12, the commutator graph of Yb(An) is disconnected
and each connected component lies inside a subgroup of Sn isomorphic to
S2 � K4 for n = 8 or n = 9, and (S2 � K4) × Z/3Z for n = 11. Let Ω be such a
connected component; clearly, if we can show that δ(Ω) = Δ(Ω), then we are
done.

We consider first the cases n = 8 and n = 9, without loss of generality, we
take Ω to be a connected component inside “the” wreath product H = S2 �S4.
Direct computation reveals that H contains 12 elements of cycle type 4 − 4;
they are the following elements and their inverses:

(1, 3, 2, 4)(5, 7, 6, 8), (1, 5, 2, 6)(3, 7, 4, 8), (1, 7, 2, 8)(3, 5, 4, 6),
(1, 3, 2, 4)(5, 8, 6, 7), (1, 5, 2, 6)(3, 8, 4, 7), (1, 7, 2, 8)(3, 6, 4, 5).
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Now observe that the three elements in the first row form a non-commuting
set, while the elements in each column generate an abelian group. Taking Ω
to be this set of 12 elements, we conclude that δ(Ω) = Δ(Ω) = 3, and we are
done.

For the case n = 11, we observe that H has 24 elements of cycle type
4 − 4 − 3 namely

(1, 3, 2, 4)(5, 7, 6, 8)(9, 10, 11), (1, 5, 2, 6)(3, 7, 4, 8)(9, 10, 11), (1, 7, 2, 8)(3, 5, 4, 6)(9, 10, 11),

(1, 3, 2, 4)(5, 8, 6, 7)(9, 10, 11), (1, 5, 2, 6)(3, 8, 4, 7)(9, 10, 11), (1, 7, 2, 8)(3, 6, 4, 5)(9, 10, 11),

(1, 3, 2, 4)(5, 7, 6, 8)(9, 11, 10), (1, 5, 2, 6)(3, 7, 4, 8)(9, 11, 10), (1, 7, 2, 8)(3, 5, 4, 6)(9, 11, 10),

(1, 3, 2, 4)(5, 8, 6, 7)(9, 11, 10), (1, 5, 2, 6)(3, 8, 4, 7)(9, 11, 10), (1, 7, 2, 8)(3, 6, 4, 5)(9, 11, 10).

and their inverses. Again, observe that the three elements in the first row form
a non-commuting set, while the elements in each column generate an abelian
group. Taking Ω to be this set of 24 elements, we conclude that δ(Ω) = Δ(Ω) =
3, and we are done. �
Lemma 3.14. δ(A15) = Δ(A15).

Proof. Direct computation shows that Yb(A15) consists of the elements of cy-
cle type 7−4−4, 6−6−3, 6−4−2−2, and 6−3−3−2. Notice that among these
classes, no two elements in different classes commute. Hence we may set Λ to
be each class in turn, and show that in each case δ(Λ) = Δ(Λ).

Class 7−4−4: In this case Corollary 3.12 implies that Γ(Λ) is discon-
nected. Taking Ω to be the maximal connected component that contains
(1, 3, 2, 4)(5, 7, 6, 8)(9, 10, 11, 12, 13, 14, 15)
and setting σ = (9, 10, 11, 12, 13, 14, 15), one can check that this component
has 72 elements, as follows:

(1, 3, 2, 4)(5, 7, 6, 8)σi, (1, 5, 2, 6)(3, 7, 4, 8)σi, (1, 7, 2, 8)(3, 5, 4, 6)σi,
(1, 3, 2, 4)(5, 8, 6, 7)σi, (1, 5, 2, 6)(3, 8, 4, 7)σi, (1, 7, 2, 8)(3, 6, 4, 5)σi.

(Here i can take any value between 1 and 6, and an element is either on
the list or its inverse is on the list.)

Now the elements of each column generate an abelian group and these 3
groups cover Ω. On the other hand, fixing i and taking the elements of any
row, we get a non-commuting set of size 3, as required.

Class 6−6−3: Reasoning along the lines of Corollary 3.12, we can deduce
that Γ(Λ) is disconnected in this situation, with a maximal connected compo-
nent lying inside a subgroup of S15 isomorphic to (S3�K4)×Z/3Z. Furthermore,
a maximal connected component contains 432 elements, with one example as
follows:
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(Here σ = (13, 14, 15), i can be either 1 or 2, and an element is either on
the list or its inverse is on the list.)

In the list above the elements of every row generate an abelian group and
so these 36 groups cover the connected component. On the other hand, fixing
i and taking the elements of the first column, we get a non-commuting set of
size 36, as required.

Class 6−4−2−2: a maximal connected component in Γ(Λ) contains 72
permutations. One example is as follows:

(1, 2, 3, 4)(5, 8)(6, 7)σi, (1, 2, 3, 4)(5, 6)(7, 8)σi, (1, 2, 3, 4)(5, 7)(6, 8)σi,
(1, 2)(3, 4)(5, 6, 7, 8)σi, (1, 3)(2, 4)(5, 6, 7, 8)σi, (1, 4)(2, 3)(5, 6, 7, 8)σi,
(1, 2, 4, 3)(5, 6)(7, 8)σi, (1, 2, 4, 3)(5, 7)(6, 8)σi, (1, 2, 4, 3)(5, 8)(6, 7)σi,
(1, 3)(2, 4)(5, 6, 8, 7)σi, (1, 4)(2, 3)(5, 6, 8, 7)σi, (1, 2)(3, 4)(5, 6, 8, 7)σi,
(1, 3, 2, 4)(5, 7)(6, 8)σi, (1, 3, 2, 4)(5, 8)(6, 7)σi, (1, 3, 2, 4)(5, 6)(7, 8)σi,
(1, 4)(2, 3)(5, 7, 6, 8)σi, (1, 2)(3, 4)(5, 7, 6, 8)σi, (1, 3)(2, 4)(5, 7, 6, 8)σi,

(Here σ = (9, 10, 11, 12, 13, 14, 15), i can be either 1 or 5, and an element
is either on the list or its inverse is on the list.)

In the list above the elements of every row generate an abelian group, and
so these 6 groups cover the connected component. On the other hand, fixing
i and taking the elements of the first column, we get a non-commuting set of
size 6, as required.

Class 6−3−3−2: a maximal connected component in Γ(Λ) contains 96
pemutations. One example is as follows:

(1, 2, 5, 6, 3, 4)(7, 8, 9)(10, 12, 11), (1, 2, 5, 6, 3, 4)(7, 8, 9)(10, 12, 11), (1, 5, 3)(2, 6, 4)(7, 12, 8, 11, 9, 10), (1, 2, 5, 6, 3, 4)(7, 9, 8)(10, 11, 12),

(1, 3, 5)(2, 4, 6)(7, 11, 9, 12, 8, 10), (1, 4, 5, 2, 3, 6)(7, 8, 9)(10, 12, 11), (1, 5, 3)(2, 6, 4)(7, 11, 9, 12, 8, 10), (1, 4, 5, 2, 3, 6)(7, 9, 8)(10, 11, 12),

(1, 3, 5)(2, 4, 6)(7, 11, 8, 10, 9, 12), (1, 2, 3, 4, 5, 6)(7, 8, 9)(10, 12, 11), (1, 5, 3)(2, 6, 4)(7, 11, 8, 10, 9, 12), (1, 2, 3, 4, 5, 6)(7, 9, 8)(10, 11, 12),

(1, 4, 3, 2, 5, 6)(7, 8, 9)(10, 12, 11), (1, 3, 5)(2, 6, 4)(7, 11, 8, 10, 9, 12), (1, 4, 3, 2, 5, 6)(7, 9, 8)(10, 11, 12), (1, 5, 3)(2, 4, 6)(7, 11, 8, 10, 9, 12),

(1, 2, 3, 6, 5, 4)(7, 8, 9)(10, 12, 11), (1, 3, 5)(2, 6, 4)(7, 11, 9, 12, 8, 10), (1, 2, 3, 6, 5, 4)(7, 9, 8)(10, 11, 12), (1, 5, 3)(2, 4, 6)(7, 11, 9, 12, 8, 10),

(1, 2, 5, 4, 3, 6)(7, 8, 9)(10, 12, 11), (1, 3, 5)(2, 6, 4)(7, 12, 8, 11, 9, 10), (1, 2, 5, 4, 3, 6)(7, 9, 8)(10, 11, 12), (1, 5, 3)(2, 4, 6)(7, 12, 8, 11, 9, 10),

(1, 3, 5)(2, 6, 4)(7, 10, 9, 12, 8, 11), (1, 4, 3, 2, 5, 6)(7, 8, 9)(10, 11, 12), (1, 5, 3)(2, 4, 6)(7, 10, 9, 12, 8, 11), (1, 4, 3, 2, 5, 6)(7, 9, 8)(10, 12, 11),

(1, 3, 5)(2, 6, 4)(7, 12, 9, 11, 8, 10), (1, 2, 5, 4, 3, 6)(7, 8, 9)(10, 11, 12), (1, 5, 3)(2, 4, 6)(7, 12, 9, 11, 8, 10), (1, 2, 5, 4, 3, 6)(7, 9, 8)(10, 12, 11),

(1, 3, 5)(2, 6, 4)(7, 12, 8, 10, 9, 11), (1, 2, 3, 6, 5, 4)(7, 8, 9)(10, 11, 12), (1, 5, 3)(2, 4, 6)(7, 12, 8, 10, 9, 11), (1, 2, 3, 6, 5, 4)(7, 9, 8)(10, 12, 11),

(1, 2, 5, 6, 3, 4)(7, 8, 9)(10, 11, 12), (1, 3, 5)(2, 4, 6)(7, 10, 9, 12, 8, 11), (1, 2, 5, 6, 3, 4)(7, 9, 8)(10, 12, 11), (1, 5, 3)(2, 6, 4)(7, 10, 9, 12, 8, 11),

(1, 4, 5, 2, 3, 6)(7, 8, 9)(10, 11, 12), (1, 3, 5)(2, 4, 6)(7, 12, 8, 10, 9, 11), (1, 4, 5, 2, 3, 6)(7, 9, 8)(10, 12, 11), (1, 5, 3)(2, 6, 4)(7, 12, 8, 10, 9, 11),

(1, 2, 3, 4, 5, 6)(7, 8, 9)(10, 11, 12), (1, 3, 5)(2, 4, 6)(7, 12, 9, 11, 8, 10), (1, 2, 3, 4, 5, 6)(7, 9, 8)(10, 12, 11), (1, 5, 3)(2, 6, 4)(7, 12, 9, 11, 8, 10).

(Here, to save space, we have omitted the cycle (13, 14) from every permu-
tation. As always every element is either on the list or its inverse is on the
list.)

In the list above the elements of every row generate an abelian group, and
so these 12 groups cover the connected component. On the other hand, taking
the elements of the first column, we get a non-commuting set of size 12, as
required. �

Theorem 1.2 now follows from Propositions 3.4 and 3.7, Corollary 3.13, and
Lemma 3.14.

4. Further work. Note that both Theorems 1.2 and 1.3 have numbers for which
information is not given. In particular, the following groups are not covered:
S10, S12, S14, A13, A14, A17, and A19.
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Results from this paper can be used to study these seven groups: for in-
stance, one can check that Yb(S10) consists of the single conjugacy class 4−2−2.
Thus Lemma 2.5 and a consideration of the abelian groups that contain ele-
ments from this class imply that δ(S10) = Δ(S10) if and only if one can find
9450 noncommuting permutations in S10 of cycle type 4−2−2.

In [5,6], Brown studies the asymptotics of the sequence
Δ(Sn)/δ(Sn) and, in particular, shows that this sequence has no limit and
takes on infinitely many distinct values arbitrarily close to 1. It seems reason-
able to think that the same is true of the sequence Δ(An)/δ(An), but this has
not yet been established.

Graphs analogous to the commuting graph have been studied in various
contexts. In particular, in [2], a graph Γc(G) is defined for any finite group G
and any c ∈ Z

+ ∪ {∞} as follows: vertices are the elements of G, with two
vertices a, b ∈ G joined by an edge if and only if 〈a, b〉 is nilpotent of class at
most c. Observe that the commuting graph is simply the graph Γ1(G).

A natural extension to the work in the current paper would be to establish
whether or not δ(Γc(G)) = Δ(Γc(G)) for G alternating or symmetric, and
c �= 1.
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Ser. A 21 (1976), 467–472.

Daniel Barrantes

Escuela de Matemáticas,
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