
Digital Object Identifier (DOI) https://doi.org/10.1007/s00205-020-01549-9
Arch. Rational Mech. Anal. 239 (2021) 1–48

A Microscopic Model for a One Parameter
Class of Fractional Laplacians with Dirichlet

Boundary Conditions

C. Bernardin, P. Gonçalves & B. Jiménez-Oviedo

Communicated by A. Garroni

Abstract

Weprove the hydrodynamic limit for the symmetric exclusion processwith long
jumps given by a mean zero probability transition rate with infinite variance and in
contact with infinitely many reservoirs with density α at the left of the system and β

at the right of the system. The strength of the reservoirs is ruled by κN−θ > 0. Here
N is the size of the system, κ > 0 and θ ∈ R. Our results are valid for θ ≤ 0. For
θ = 0, we obtain a collection of fractional reaction–diffusion equations indexed
by the parameter κ and with Dirichlet boundary conditions. Their solutions also
depend on κ . For θ < 0, the hydrodynamic equation corresponds to a reaction
equation with Dirichlet boundary conditions. The case θ > 0 is still open. For that
reason we also analyze the convergence of the unique weak solution of the equation
in the case θ = 0 when we send the parameter κ to zero. Indeed, we conjecture
that the limiting profile when κ → 0 is the one that we should obtain when taking
small values of θ > 0.

1. Introduction

Normal (diffusive) transport phenomena are described by standard randomwalk
models. Anomalous transport, in particular transport phenomena giving rise to su-
perdiffusion, are nowadays encapsulated in the Lévy flights or Lévy walks frame-
work [7,8] and appear in physics, finance and biology. The term “Lévy flight”
was coined by Mandelbrot and is nothing but a random walk in which the step-
lengths have a probability distribution that is heavy tailed. A (one-dimensional)
Lévy walker moves with a constant velocity v for a heavy-tailed random time τ

on a distance x = vτ in either direction with equal probability and then chooses
a new direction and moves again. One then easily shows that for Lévy flights or
Lévy walks, the space-time scaling limit P(x, t) of the probability distribution of
the particle position x(t) is solution of the fractional diffusion equation

∂t P = −c(−�)γ/2P, (1.1)
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where c is a constant and γ ∈ (1, 2). In physics, the description of anomalous
transport phenomena by Lévy walks instead of Lévy flights is sometimes preferred
despite the twomodels having the same scaling limit formprovided by (1.1) because
the first ones have a finite speed of propagation (see [7] for more details).

While Lévy walks and Lévy flights are today well known and popular models
to describe superdiffusion in infinite systems in various application fields, there
have recently been several physical studies pointing out that it would be desirable
to have a better understanding of Lévy walks in bounded domains. For bounded
domains, boundary conditions and exchange with reservoirs or environment have
to be taken into account. A particular interest for this problem is related to the
description of anomalous diffusion of energy in low-dimensional lattices [9,19]
in contact with reservoirs [10,11,18,20]. It is for example argued in [20] that
the density profiles of Lévy walkers in a finite box with absorbtion-reflection-
creation well reproduces the temperature profile of some chains of harmonic os-
cillators with conservative momentum-energy noise and thermostat boundaries.
It is well established that superdiffusive systems are much more sensitive to the
reservoirs and boundaries than diffusive systems but quantitative informations,
like the form of the singularities of the profiles at the boundaries, are still miss-
ing.

In this work, motivated by these studies, we propose a simple interacting par-
ticle system which may be considered as a substitute to Lévy flights in bounded
domains with reservoirs when Lévy flights are moreover interacting. Indeed, the
previous studies consider only non-interacting cases. The system considered here
is composed of interacting Lévy flights on a one-dimensional lattice. More ex-
actly, the system is an exclusion process on a finite lattice of size N with jumps
having a distribution in the form p(z) ∼ |z|−(1+γ ), with γ > 0, and in contact
with some reservoirs at density α (resp. β) at its left (resp. right boundary). The
reservoirs’ coupling is modulated by a prefactor κN−θ , κ > 0, θ ∈ R. In this
work we focus on the case γ ∈ (1, 2) (the case γ > 2 was solved in [4]) and we
also restrict to the case θ ≤ 0. The cases θ > 0, γ ∈ (0, 1] and γ = 2 remain
open.

Our main result is the derivation of the hydrodynamic limit for the density of
particles for this system. The limiting PDE depends on the value of κ and takes the
form of a fractional heat equation with a singular reaction term, see (2.10).1 The
singular reaction term fixes the density on the left to be α and on the right to be
β. In our opinion this singular reaction term, which is due to the presence of the
reservoirs, should be considered more as a boundary condition than as a reaction
term.We obtain in this way a new family of regional fractional Laplacians on [0, 1]
with zero Dirichlet boundary conditions indexed by κ and taking the form

Lκ = L − κV1, V1(u) = r−(u) + r+(u), (1.2)

1 In the diffusive case γ > 2 the limiting PDE is given by the heat equation with Dirichlet
boundary conditions [4]. It does not depend on κ .
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where

r−(u) = cγ γ −1u−γ and r+(u) = cγ γ −1(1 − u)−γ

and cγ is a constant depending on γ . These operators are symmetric non-positive
when restricted to the set of smooth functions compactly supported in (0, 1). For
κ = 1, we recover the so-called restricted fractional Laplacian while in the limit
κ → 0 we get the so-called regional fractional Laplacian. We recall that since the
fractional Laplacian is a non-local operator, the definition of a fractional Lapla-
cian with Dirichlet boundary conditions is not obvious from a modeling point of
view. In the PDE’s literature several candidates have been proposed, for instance,
“restricted fractional Laplacian”, “spectral fractional Laplacian”, “Neumann Frac-
tional Laplacian” [2,23], but often without a clear physical interpretation. A prob-
abilistic interpretation of these operators is sometimes possible and may enlighten
their meaning. The restricted fractional Laplacian (κ = 1) corresponds to the gener-
ator of a γ -Lévy stable process killed outside of (0, 1), while the regional fractional
Laplacian (κ = 0) corresponds to the generator of a censored γ -Lévy stable process
on (0, 1) [5,15]. For κ �= 0, 1 we could rely on the Feynman–Kac formula but we
do not pursue this issue here. As mentioned above our reservoirs are regulated by
the parameters κN−θ , κ > 0 and in this work we focus on the case θ ≤ 0. The
case θ > 0 is quite interesting and we conjecture that for small values of θ > 0
it is given by (2.10) for the choice κ = 0. To support this conjecture, in Theorem
2.13, we analyse the convergence of the profile that we obtained for θ = 0 and
which is indexed in κ , when κ → 0 (we also analyse the case κ → ∞ confirming
the behaviour obtained from the microscopic system when θ < 0) and indeed, we
obtain that the limiting profiles are weak solution of the conjectured equation. We
remark that the main problem in analysing the behavior of the microscopic system
in this case is at the level of the derivation of the Dirichlet boundary conditions,
since the two-blocks estimate does not work. We leave this open problem for a
future work. After having obtained the hydrodynamic limits, we have studied their
stationary solutions ρ̄κ , which are not explicit apart from the case κ = 1 and the
case κ = ∞, i.e. ρ̄∞ = limκ→∞ ρ̄κ . These profiles coincide with the profiles of the
microscopic system in their non-equilibrium stationary states (see [3] for the κ = 1
case). The bounded continuous function ρ̄κ has α and β as boundary conditions
and solves in a distributional sense the equation

Lκ ρ̄κ = −κV0, V0(u) = αr−(u) + βr+(u). (1.3)

There are many recent studies focusing on the regularization properties of frac-
tional operators in bounded domains. Even in this one dimensional setup, the ques-
tion is in general non trivial. For κ = 1, ρ̄κ can be computed explicitly and it appears
that it is smooth in the interior of [0, 1] but has only Hölder regularity equal to γ /2
at the boundaries. For κ �= 1, it should be possible to prove the interior regularity
of ρ̄κ by some existing methods [21] but the boundary regularity that numerical
simulations seem to indicate depends on κ is much more challenging and seems to
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be open. We prove that as κ → 0, ρ̄κ → ρ̄0 in a suitable topology and that ρ̄0 is a
weakly harmonic function of the regional fractional Laplacian L0, i.e. we can take
κ = 0 in (1.3). We left these interesting questions for future works.

The paper is organized as follows: in Section 2 we introduce the model and we
present all the PDE’s that will be related to its hydrodynamic limit. We also present
the main results of this work, namely the hydrodynamic limit stated in Theorem
2.12, the convergence, when κ → 0 and when κ → ∞, of the hydrodynamical
profile in Theorem 2.13 and of the stationary profile in Theorem 2.15. Section 3
is devoted to the proof of Theorem 2.12 while Sections 4 and 5 are dedicated,
respectively, to the convergence of the hydrodynamical profile and of the stationary
profile. Finally, in Section 6 we prove the uniqueness of all the weak solutions that
we consider in this work.

2. Statement of Results

2.1. The Model

For N ≥ 2 let �N = {1, . . . , N − 1}, which we refer to as the bulk. The
boundary driven exclusion process with long jumps is a Markov process that we
denote by {η(t)}t≥0 with state space 
N := {0, 1}�N and it is defined as follows.
The configurations of the state space 
N are denoted by η, so that for x ∈ �N ,
ηx = 0 means that the site x is vacant while ηx = 1 means that the site x is
occupied. Fix γ ∈ (1, 2). Let p : Z → [0, 1] be a translation invariant transition
probability defined by

p(z) = cγ

1{z �=0}
|z|γ+1 , (2.1)

where cγ > 0 is a normalizing constant. Since γ ∈ (1, 2), we know that p has
infinite variance but finite mean.

We consider the process in contact with infinitely many stochastic reservoirs at
the left and right of �N . We fix the parameters α, β ∈ (0, 1), κ > 0 and θ ≤ 0.
Particles can be injected into any site z of the bulk from: the left of 0 at rate
ακN−θ p(z) or from the right of N at rate βκN−θ p(z). Particles can be removed
fromany site of the bulk to: the left of 0 at rate (1−α)κN−θ p(z) and to the right of N
at rate (1−β)κN−θ p(z). To properly describe the dynamics, at each pair of sites of
the bulk {x, y}weassociate a Poisson process of intensity one andPoisson processes
associated with different bonds are independent. Whenever a clock associated with
a bond {x, y} rings, the values of ηx and ηy are exchanged with rate p(y− x)/2. At
the boundary the dynamics is described as follows. To each pair of sites {x, y} with
x ∈ �N and y ≤ 0 (resp. y ≥ N ) we associate a Poisson process of intensity one
and of them are independent. If the clock associated with the bond {x, y} rings, the
value of ηx changes to 1 − ηx with rate κN−θ p(x − y) [(1 − α)ηx + α(1 − ηx )]
(resp. κN−θ p(x − y) [(1− β)ηx + β(1− ηx )]). The dynamics is illustrated in the
Fig. 1.

The process is characterized by its infinitesimal generator

LN = L0
N + κN−θ L�

N + κN−θ Lr
N , (2.2)
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which acts on functions f : 
N → R as

(L0
N f )(η) = 1

2

∑

x,y∈�N

p(x − y)[ f (σ x,yη) − f (η)],

(L�
N f )(η) =

∑

x∈�N
y≤0

p(x − y)cx (η;α)[ f (σ xη) − f (η)],

(Lr
N f )(η) =

∑

x∈�N
y≥N

p(x − y)cx (η;β)[ f (σ xη) − f (η)],

(2.3)

where

(σ x,yη)z =

⎧
⎪⎨

⎪⎩

ηz, if z �= x, y,

ηy, if z = x,

ηx , if z = y

, (σ xη)z =
{

ηz, if z �= x,

1 − ηx , if z = x,

and for a function ϕ : [0, 1] → R and for x ∈ �N we used the notation

cx (η;ϕ(·)) := [
ηx
(
1 − ϕ( x

N )
)+ (1 − ηx )ϕ( x

N )
]
. (2.4)

We consider the Markov process speeded up in the subdiffusive time scale
t�(N ) and we use the notation ηN

t := η(t�(N )), so that ηN
t has infinitesimal

generator �(N )LN . Although ηN
t depends on α, β θ and κ , we shall omit these

indexes in order to simplify notation.

2.2. Hydrodynamic Equations

From now and for the rest of this article we fix a finite time window [0, T ].
To properly state the hydrodynamic limit, we need to introduce some notations
and definitions, which we present as follows: first we abbreviate the Hilbert space
L2([0, 1], h(u)du) by L2

h and we denote its inner product by 〈·, ·〉h and the corre-
sponding norm by ‖ · ‖h . When h ≡ 1 we simply write L2, 〈·, ·〉 and ‖ · ‖. For an
interval I in R and integers m and n, we denote by Cm,n([0, T ] × I ) the set of
functions defined on [0, T ] × I that are m times differentiable on the first variable
and n times differentiable on the second variable, with continuous derivatives. We
denote by C∞

c (I ) the set of all smooth real-valued functions defined in I with
compact support included in I . The supremum norm is denoted by ‖ · ‖∞. We also
consider the set C1,∞

c ([0, T ] × I ) of functions G ∈ C1,∞([0, T ] × I ) such that
G(t, ·) ∈ C∞

c (I ) for all t ∈ [0, T ]. An index on a function will always denote
a variable, not a derivative. For example, Gt (u) means G(t, u). The derivative of
G ∈ Cm,n([0, T ] × I ) will be denoted by ∂tG (first variable) and ∂uG (second
variable).

The fractional Laplacian −(−�)γ/2 of exponent γ /2 is defined on the set of
functions G : R → R such that

∫ ∞

−∞
|G(u)|

(1 + |u|)1+γ
du < ∞ (2.5)
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by

− (−�)γ/2G (u) = cγ lim
ε→0

∫ ∞

−∞
1|u−v|≥ε

G(v) − G(u)

|u − v|1+γ
dv, (2.6)

provided the limit exists (which is the case, for example, if G is in the Schwartz
space) and where cγ is set in (2.1). Up to a multiplicative constant, −(−�)γ/2 is
the generator of a γ -Lévy stable process.

We define the operator L by its action on functions G ∈ C∞
c ((0, 1)), by

∀u ∈ (0, 1), (LG)(u) = cγ lim
ε→0

∫ 1

0
�|u−v|≥ε

G(v) − G(u)

|u − v|1+γ
dv.

The operator L is called the regional fractional Laplacian on (0, 1). The semi
inner-product 〈·, ·〉γ /2 is defined on the set C∞

c ((0, 1)) by

〈G, H〉γ /2 = cγ

2

∫∫

[0,1]2
(H(u) − H(v))(G(u) − G(v))

|u − v|1+γ
dudv. (2.7)

The corresponding semi-norm is denoted by ‖ · ‖γ /2. Observe that for any G, H ∈
C∞
c ((0, 1)) we have that

〈G,−LH〉 = 〈−LG, H〉 = 〈G, H〉γ /2.

Recall (1.2). We introduced a family of operators indexed by κ and taking the form

Lκ = L − κV1,

where V1 was defined in 1.2. Acting on C∞
c ((0, 1)) these operators are symmetric

and non-positive. For κ = 1,we recover the so-called restricted fractional Laplacian
(see [23]):

∀u ∈ (0, 1), −(−�)γ/2G (u) = (LG)(u) − V1(u)G(u) := (L1G)(u), (2.8)

while in the limit κ → 0 we get the regional fractional Laplacian.
We rewrite V1(u) = r−(u) + r+(u) and V0(u) = αr−(u) + βr+(u) where the

functions r± : (0, 1) → (0,∞) are defined by

r−(u) = cγ γ −1u−γ , r+(u) = cγ γ −1(1 − u)−γ . (2.9)

Definition 2.1. The Sobolev space H γ /2 := H γ /2([0, 1]) consists of all square
integrable functions g : (0, 1) → R such that ‖g‖γ /2 < ∞. This is a Hilbert space
for the norm ‖ · ‖H γ /2 defined by

‖g‖2H γ /2 := ‖g‖2 + ‖g‖2γ /2.

Its elements coincide a.e. with continuous functions. The completion ofC∞
c ((0, 1))

for this norm is denoted byH γ /2
0 := H

γ /2
0 ([0, 1]). This is a Hilbert space whose
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elements coincide a.e. with continuous functions vanishing at 0 and 1. On H
γ /2
0 ,

the two norms ‖ · ‖H γ /2 and ‖ · ‖γ /2 are equivalent.
The space L2(0, T ;H γ /2) is the set of measurable functions f : [0, T ] →

H γ /2 such that
∫ T

0
‖ ft‖2H γ /2dt < ∞.

The spaces L2(0, T ;H γ /2
0 ) and L2(0, T ; L2

h) are defined similarly.

We now extend the definition of the regional fractional Laplacian on (0, 1),
which has been defined on C∞((0, 1)), to the space H γ /2.

Definition 2.2. For ρ ∈ H γ /2 we define the distribution Lρ by

〈Lρ,G〉 = 〈ρ, LG〉, G ∈ C∞
c ((0, 1)).

Let us check that Lρ is indeed a well defined distribution. Consider a sequence
{Gn}n≥1 ∈ C∞

c ((0, 1)) converging to 0 in the usual topology of the test functions.
By the integration by parts formula for the regional fractional Laplacian (see The-
orem 3.3 in [15]) we have for any ρ ∈ H γ /2 that 〈Lρ,Gn〉 = 〈ρ,Gn〉γ /2. Now
using the Cauchy–Schwarz’s inequality and the mean value Theorem, we get that
〈Lρ,Gn〉 is bounded from above by a constant times

‖ρ‖γ /2‖Gn‖γ /2 � ‖ρ‖γ /2‖∂uGn‖2∞
∫∫

[0,1]2
|u − v|1−γ dudv

which goes to 0 as n → ∞ since γ ∈ (1, 2). Therefore Lρ is a well defined
distribution.

Above (and hereinafter) we write f (u) � g(u) if there exists a constant C
independent of u such that f (u) ≤ Cg(u) for every u. We will also write f (u) =
O(g(u)) if the condition | f (u)| � |g(u)| is satisfied. Sometimes, in order to stress
the dependence of a constant C on some parameter a, we write C(a).

2.3. Hydrodynamic Equations

Now, for the following definitions recall the definition of Lκ given in (1.2) and
V0 from (1.3).

Definition 2.3. Let κ̂ ≥ 0 be some parameter and let g : [0, 1] → [0, 1] be a mea-
surable function. We say that ρκ̂ : [0, T ]×[0, 1] → [0, 1] is a weak solution of the
non-homogeneous regional fractional reaction–diffusion equation with Dirichlet
boundary conditions given by

⎧
⎪⎨

⎪⎩

∂tρ
κ̂
t (u) = Lκ̂ ρκ̂

t (u) + κ̂V0(u), (t, u) ∈ [0, T ] × (0, 1),

ρκ̂
t (0) = α, ρκ̂

t (1) = β, t ∈ [0, T ],
ρκ̂
0 (u) = g(u), u ∈ (0, 1),

(2.10)

if :
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(i) ρκ̂ ∈ L2(0, T ;H γ /2).

(ii)
∫ T
0

∫ 1
0

{
(α−ρκ̂

t (u))2

uγ + (β−ρκ̂
t (u))2

(1−u)γ

}
du dt < ∞ for κ̂ > 0;ρκ̂

t (0) = α,ρκ̂
t (1) = β

for almost every t ∈ [0, T ], for κ̂ = 0.
(iii) For all t ∈ [0, T ] and all functions G ∈ C1,∞

c ([0, T ] × (0, 1)) we have that

FDir (t, ρ
κ̂ ,G, g) :=

〈
ρκ̂
t ,Gt

〉
− 〈g,G0〉

−
∫ t

0

〈
ρκ̂
s ,
(
∂s + Lκ̂

)
Gs

〉
ds − κ̂

∫ t

0
〈Gs, V0〉 ds = 0.

(2.11)

Remark 2.4. Note that item (ii) is different for κ̂ > 0 and κ̂ = 0. We can see that
the condition for κ̂ = 0 is weaker than the condition for κ̂ > 0. In fact, item (i) and
item (ii) for κ̂ > 0 of the previous definition imply that ρκ̂

t (0) = α and ρκ̂
t (1) = β,

for almost every t in [0, T ]. Indeed, first note that by item (i) we know that ρt is
γ−1
2 -Hölder for almost every t in [0, T ] (see Theorem 8.2 of [13]). Then, we note

that
∫ T

0

(ρκ̂
t (0) − α)2

γ − 1
dt =

∫ T

0
lim
ε→0

εγ−1
∫ 1

ε

(ρκ̂
t (0) − α)2

uγ
dudt.

By summing and subtracting ρκ̂
t (u) inside the square in the expression on the right

hand side in the previous equality and using the inequality (a + b)2 ≤ 2a2 + 2b2

we get that the right hand side of the previous equality is bounded from above by

2
∫ T

0
lim
ε→0

εγ−1
∫ 1

ε

(ρκ̂
t (0) − ρκ̂

t (u))2

uγ
dudt

+ 2
∫ T

0
lim
ε→0

εγ−1
∫ 1

ε

(ρκ̂
t (u) − α)2

uγ
dudt.

Since ρt is
γ−1
2 -Hölder for almost every t in [0, T ] the first term in the previous

expression vanishes. Now, the term on the right hand side in the previous expression
is bounded from above by

2 lim
ε→0

εγ−1
∫ T

0

∫ 1

0

(ρκ̂
t (u) − α)2

uγ
dudt,

which vanishes as a consequence of item (ii). Thus, we have that

∫ T

0

(ρκ̂
t (0) − α)2

γ − 1
dt = 0,

whence we get that ρκ̂
t (0) = α for almost every t in [0, T ]. Showing that ρκ̂

t (1) = β

for almost every t in [0, T ] is completely analogous.
Moreover, the existence and uniqueness of a weak solution to the equation

above, for κ̂ > 0 does not require the strong form of (ii). Nevertheless, in order to
prove Theorem 2.13 we need to impose that condition.
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Remark 2.5. Observe that in the case κ̂ = 1, since L1 = −(−�)γ/2 we obtain
in Definition 2.3 the fractional heat equation with reaction and Dirichlet boundary
conditions, i.e.

⎧
⎪⎨

⎪⎩

∂tρ
1
t (u) = L1ρ

1
t (u) + V0(u), (t, u) ∈ [0, T ] × (0, 1),

ρ1
t (0) = α, ρ1

t (1) = β, t ∈ [0, T ],
ρ1
0(u) = g(u), u ∈ (0, 1),

by (2.8) and (1.2) the notion of item (iii) is reduced to

FDir (t, ρ
1,G, g) :=

〈
ρ1
t ,Gt

〉
− 〈g,G0〉 −

∫ t

0

〈
ρ1
s ,
(
∂s − (−�)γ/2

)
Gs

〉
ds

−
∫ t

0
〈Gs, V0〉 ds = 0

for all t ∈ [0, T ] and all functions G ∈ C1,∞
c ([0, T ] × (0, 1)).

Definition 2.6. Let κ̂ > 0 be some parameter and let g : [0, 1] → [0, 1] be a
measurable function.We say that ρκ̂ : [0, T ]×[0, 1] → [0, 1] is a weak solution of
the non-homogeneous reaction equation with Dirichlet boundary conditions given
by

⎧
⎪⎨

⎪⎩

∂tρ
κ̂
t (u) = −κ̂ρκ̂

t (u)V1(u) + κ̂V0(u), (t, u) ∈ [0, T ] × (0, 1),

ρκ̂
t (0) = α, ρκ̂

t (1) = β, t ∈ [0, T ],
ρκ̂
0 (u) = g(u), u ∈ (0, 1),

(2.12)

if:

(i)
∫ T
0

∫ 1
0

{
(α−ρκ̂

t (u))2

uγ + (β−ρκ̂
t (u))2

(1−u)γ

}
du dt < ∞.

(ii) For all t ∈ [0, T ] and all functions G ∈ C1,∞
c ([0, T ] × (0, 1)) we have

FReac(t, ρ
κ̂ ,G, g) :=

〈
ρκ̂
t ,Gt

〉
− 〈g,G0〉 −

∫ t

0

〈
ρκ̂
s , ∂sGs

〉
ds

+
∫ t

0

〈
ρκ̂
s ,Gs

〉

V1
ds − κ̂

∫ t

0
〈Gs, V0〉 ds = 0.

(2.13)

Remark 2.7. Note that the explicit solution of (2.12) is given by

ρ̄∞(u) + (g(u) − ρ̄∞(u))e−t κ̂V1(u),

where ρ̄∞(u) = V0(u)

V1(u)
. As we will see, the function ρ̄∞ plays an important role

in the proof of our main results, namely, Theorems 2.13 and 2.15.

Lemma 2.8. The weak solutions of (2.10) and (2.12) are unique.

Aiming to concentrate on the main facts, the proof of previous lemma is postponed
to Section 6.
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Definition 2.9. Let κ̂ ≥ 0 be some parameter. We say that ρ̄κ̂ : [0, 1] → [0, 1]
is a weak solution of the stationary regional fractional reaction–diffusion equation
with non-homogeneous Dirichlet boundary conditions given by

{
Lκ̂ ρ̄κ̂ (u) + κ̂V0(u) = 0, u ∈ (0, 1),

ρ̄κ̂ (0) = α, ρ̄κ̂ (1) = β,
(2.14)

if:

(i) ρ̄κ̂ ∈ H γ /2.

(ii)
∫ 1
0

{(
α−ρ̄κ̂ (u)

)2

uγ +
(
β−ρ̄κ̂ (u)

)2

uγ

}
du < ∞ if κ̂ > 0 and ρ̄κ̂ (0) = α, ρ̄κ̂ (1) = β

if κ̂ = 0.
(iii) For any function G ∈ C∞

c ((0, 1)) we have

F̄Dir (ρ̄
κ̂ ,G) :=

〈
ρ̄κ̂ , Lκ̂G

〉
+ κ̂ 〈G, V0〉 = 0.

Remark 2.10. Weobserve that ρ̄0 is aweak harmonic function forL and the interior
regularity of this solution is studied in [21], but the regularity at the boundary is
unknown.

In Section 6 we will prove the following lemma.

Lemma 2.11. There exists a unique weak solution of (2.14).

2.4. Statement of Results

First we want to state the hydrodynamic limit of the process {ηN
t }t≥0 with state

space 
N and with infinitesimal generator �(N )LN defined in (2.2).
Let M+ be the space of positive measures on [0, 1] with total mass bounded

by 1 equipped with the weak topology. For any configuration η ∈ 
N we define
the empirical measure πN (η, du) := πN ,κ (η, du) in 
N by

πN (η, du) = 1

N − 1

∑

x∈�N

ηxδ x
N

(du) , (2.15)

where δa is a Dirac mass at a ∈ [0, 1] and πN
t (η, du) := πN (ηN

t , du).

Let g : [0, 1] → [0, 1] be a measurable function. We say that a sequence
of probability measures {μN }N≥1 in 
N is associated to the profile g if for any
continuous function G : [0, 1] → R and every δ > 0

lim
N→∞ μN

⎛

⎝η ∈ 
N :
∣∣∣∣∣∣
1

N

∑

x∈�N

G
( x
N

)
ηx −

∫ 1

0
G(u)g(u)du

∣∣∣∣∣∣
> δ

⎞

⎠ = 0.

Wedenote byPμN the probabilitymeasure in theSkorohod spaceD([0, T ],
N )

induced by theMarkov process ηN
t and the initial measureμN in
N andwe denote

byEμN the expectation with respect to PμN . Let {QN }N≥1 be the sequence of prob-
ability measures on the Skorohod space D([0, T ],M+) induced by the Markov
process {πN

t }t≥0 and by PμN .
At this point we are ready to state the hydrodynamic limit of the process ηN

t .
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Theorem 2.12. (Hydrodynamic limit) Let g : [0, 1] → [0, 1] be a measurable
function and let {μN }N≥1 be a sequence of probability measures in 
N associated
to g. Then, for any 0 ≤ t ≤ T ,

lim
N→∞ PμN

⎛

⎝ηN· ∈ D([0, T ],
N ) :
∣∣∣∣∣∣
1

N

∑

x∈�N

G
( x
N

)
ηx (t�(N ))

−
∫ 1

0
G(u)ρκ̂

t (u)du

∣∣∣∣ > δ

)
= 0,

where the time scale is given by�(N ) = N γ+θ and ρκ̂
t is the unique weak solution

of:

• (2.12) with κ̂ = κ , if θ < 0;
• (2.10) with κ̂ = κ , if θ = 0.

Once the hydrodynamic limit is obtained, we would like to know how the weak
solution ρκ

t and the stationary solution ρ̄κ behave as κ goes to 0 or ∞ and this
is the purpose of Theorems 2.13 and 2.15 stated below. This limiting profile will
give us an idea of what to expect at the hydrodynamics level when we consider
our microscopic dynamics in contact with reservoirs whose strength is regulated
by κ/N θ and when θ > 0 as in [4]. As mentioned in the introduction we do not
analyze the system in this regime but we conjecture that for small positive values
of θ > 0 (that corresponds to slow reservoirs) the hydrodynamic limit should be
given by the weak solution of (2.10) with κ̂ = 0.

Theorem 2.13. Let ρ0 : [0, 1] → [0, 1] be a measurable function. Further, let ρκ

be the weak solution of (2.10) with κ̂ = κ and with initial condition ρ0 which is
independent of κ and let ρ̂κ

t := ρκ
t/κ , for all t ∈ [0, T ]. Then

(i) ρκ converges strongly to ρ0 in L2(0, T ;H γ /2) as κ goes to 0, where ρ0 is the
weak solution of (2.10) with κ̂ = 0 and initial condition ρ0.

(ii) If ρ0 − ρ̄∞ ∈ H γ /2 then ρ̂κ converges strongly to ρ∞ in L2(0, T ; L2
V1

) as
κ goes to ∞, where ρ∞ is the weak solution of (2.12) with κ̂ = 1 and initial
condition ρ0.

Remark 2.14. The convergence in Theorem 2.13 is also true in L2(0, T ; L2). In
fact, we will see that a crucial step in the proof of the theorem is to show that ρκ

converges strongly in L2(0, T ; L2). Convergence in i) is also true in L2(0, T ; L2
V1

)

and it is a consequence of the fractional Hardy’s inequality (see e.g. [12]).

Theorem 2.15. Let ρ̄κ be the weak solution of (2.14). Then,

(i) ρ̄κ converges strongly to ρ̄0 in H γ /2 as κ goes to 0, where ρ̄0 is the weak
solution of (2.14) with κ = 0.

(ii) ρ̄κ converges strongly to ρ̄∞ in L2
V1

as κ goes to ∞, where ρ̄∞ is given in
Remark 2.7.
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3. Proof of Theorem 2.16: Hydrodynamic Limit

The proof of this theorem follows the usual approach of convergence in distri-
bution of stochastic processes: we prove tightness of the sequence {QN }N≥1 and
then we prove uniqueness of the limiting point, which we denote by Q. These two
results combined give the convergence of {QN }N≥1 to Q, as N → ∞. In order to
characterize the limiting point Q, we prove that all limiting points of the sequence
{QN }N≥1 are concentrated on trajectories of measures that are absolutely continu-
ous with respect to the Lebesgue measure and whose density ρκ

t is a weak solution
of the hydrodynamic equation as given inDefinition 2.3. From the uniqueness of the
weak solutions of this equation, namely Lemma 2.11, we conclude that {QN }N≥1
has a unique limit point Q.

First, in the following subsection we explain how the item (iii) in Definition
2.3 appears. In Section 3.2 we prove that {QN }N≥1 is tight, then in Section 3.3 we
obtain energy estimates which are crucial to ensure the uniqueness of the limiting
point. We conclude this section with the characterization of the limiting point (in
Section 3.4).

3.1. Heuristics for the Hydrodynamic Equations

In order to make the presentation simple, let us fix a function G : [0, 1] → R

which does not depend on time and has compact support included in (0, 1).
By Dynkin’s formula (see Lemma A.5.1 in [16]) we have that

MN
t (G) = 〈πN

t ,G〉 − 〈πN
0 ,G〉 −

∫ t

0
�(N )LN 〈πN

s ,G〉ds (3.1)

is amartingalewith respect to thenatural filtration {Ft }t≥0 whereFt := σ({η(s)}s≤t )

for all t ∈ [0, T ].
Above, for an integrable functionG : [0, 1] → R, we used the notation 〈πN

t ,G〉
to represent the integral of G with respect the measure πN

t :

〈
πN
t ,G

〉
= 1

N − 1

∑

x∈�N

G
( x
N

)
ηx (t�(N )).

In the previous expression, we are using a measure πN
t and a function G, therefore,

this notation should not be mistaken with the one used for the inner product in L2.
Note that LNηx is equal to

∑

y∈�N

p(x − y)[ηy − ηx ] + κ

N θ

∑

y≤0

p(x − y)[α − ηx ]

+ κ

N θ

∑

y≥N

p(x − y)[β − ηx ].
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Therefore, a simple computation shows that

�(N )LN (〈πN ,G〉) = �(N )

N − 1

∑

x∈�N

(LNG)( x
N )ηx + κ�(N )

(N − 1)N θ

∑

x∈�N

G( x
N )

(
r−
N ( x

N )(α − ηx ) + r+
N ( x

N )(β − ηx )
)
,

(3.2)

where we denote by LNG the continuous function on [0, 1] which is defined as
the linear interpolation of the function

(LNG)( x
N ) =

∑

y∈�N

p(y − x)
[
G(

y
N ) − G( x

N )
]

(3.3)

for all x ∈ �N with (LNG)(0) = (LNG)(1) = 0. We also define the functions
r±
N : [0, 1] → R as the linear interpolation of the function

r−
N ( x

N ) =
∑

y≥x

p(y), r+
N ( x

N ) =
∑

y≤x−N

p(y) (3.4)

for all x ∈ �N with r±
N (0) = r±

N ( 1
N ) and r±

N (1) = r±
N ( N−1

N ). By Lemma 3.3 in [3]
we have that

lim
N→∞ N γ (r−

N )(u) = r−(u), lim
N→∞ N γ (r+

N )(u) = r+(u) (3.5)

uniformly in [a, 1−a] for a ∈ (0, 1) and we also can deduce from that lemma that

lim
N→∞ N γ (LNG)(u) = (LG)(u) (3.6)

uniformly in [a, 1 − a], for all functions G with compact support included in
[a, 1 − a].

Now, we are going to analyse all the terms in (3.2) for θ ≤ 0. Thus, we will
be able to see how the different boundary conditions appear on the hydrodynamic
equations given in Section 2.3 from the underlying particle system.

3.1.1. The Case θ < 0 In this regime we take �(N ) = N γ+θ and a function
G ∈ C∞

c (0, 1). By using (3.6) we have that the first term on the right hand side
of (3.2) vanishes since θ < 0. Now, the second term on the right hand side in
(3.2) is equal to κ〈α −πN

t , N γ Gr−
N 〉+κ〈β −πN

t , N γ Gr+
N 〉. By (3.5) the previous

expression converges, as N goes to ∞, to

κ

∫ 1

0
(α − ρκ

t (u))G(u)r−(u)du + κ

∫ 1

0
(β − ρκ

t (u))G(u)r+(u)du

= −κ

∫ 1

0
ρκ
t (u)G(u)V1(u)du + κ

∫ 1

0
G(u)V0(u)du.
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3.1.2. The Case θ = 0 In this regime we take N γ and a function G ∈ C∞
c (0, 1).

The first term on the right hand side in (3.2) can be replaced, thanks to (3.6) by

〈πN
t , LG〉 →

∫ 1

0
(LG)(u)ρκ

t (u)du,

as N goes to ∞. Similarly, the second term on the right hand side of (3.2) is equal
to κ〈α − πN

t , N γ Gr−
N 〉 + κ〈β − πN

t , N γ Gr+
N 〉 which converges, as N goes to ∞,

to

κ

∫ 1

0
(α − ρκ

t (u))G(u)r−(u)du + κ

∫ 1

0
(β − ρκ

t (u))G(u)r+(u)du

= −κ

∫ 1

0
ρκ
t (u)G(u)V1(u)du + κ

∫ 1

0
G(u)V0(u)du.

This intuitive argument is rigorously proved in Section 3.4.

3.2. Tightness

In this subsection we prove that the sequence {QN }N≥1 is tight. We use the
usual approach (see, for example, Propositions 4.1.6 and 4.1.7 in [16]), which says
that is enough to show that, for all ε > 0

lim
δ→0

lim sup
N→∞

sup
τ∈TT ,τ̄≤δ

PμN

[
ηN· ∈ D([0, T ],
N )

:
∣∣∣〈πN

τ+τ̄ ,G〉 − 〈πN
τ ,G〉

∣∣∣ > ε
]

= 0, (3.7)

for any function G belonging to C([0, 1]) . Above TT is the set of stopping times
bounded by T and we implicitly assume that all the stopping times are bounded by
T , thus, τ + τ̄ should be read as (τ + τ̄ ) ∧ T . Indeed, we prove below that (3.7) is
true for any function G in C2

c ((0, 1)), by using an L1 approximation procedure(a
similar argument as done in [4]), we can extend this class of functions to functions
G ∈ C([0, 1]).
Proposition 3.1. The sequence of measures {QN }N≥1 is tight with respect to the
Skorohod topology of D([0, T ],M+).

Proof. Note that, we are going to prove (3.7) for functions G in C2
c ((0, 1)). Recall

from (3.1) that MN
t (G) is a martingale with respect to the natural filtration {Ft }t≥0.

In order to prove (3.7) it is enough to show that

lim
δ→0

lim sup
N→∞

sup
τ∈TT ,τ̄≤δ

EμN

[∣∣∣∣
∫ τ+τ̄

τ

�(N )LN 〈πN
s ,G〉ds

∣∣∣∣

]
= 0 (3.8)

and

lim
δ→0

lim sup
N→∞

sup
τ∈TT ,τ̄≤δ

EμN

[(
MN

τ (G) − MN
τ+τ̄ (G)

)2] = 0. (3.9)
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By using (3.5), (3.6) and the fact that G ∈ C2
c ((0, 1)) we can bound the expression

in (3.2) by a constant. By using the fact that |ηN
x (s)| ≤ 1 and

∑

x≥1

(
r−
N ( x

N ) + r+
N ( x

N )
)

< ∞ (3.10)

(since γ > 1), we can bound from above the second term at the right hand side in
(3.2) by a constant times �(N )N−1−θ . Considering the different values of θ we
see that such term is bounded from above by a constant. Then we have that

|�(N )LN (〈πN
s ,G〉)| � 1 (3.11)

for any s ≤ T , which trivially implies (3.8).
In order to prove (3.9), by Dynkin’s formula (see Appendix 1 in [16]) we know

that

(
MN

t (G)
)2 −

∫ t

0
�(N )

[
LN 〈πN

s ,G〉2 − 2〈πN
s ,G〉LN 〈πN

s ,G〉
]
ds

is a martingale with respect to the natural filtration {Ft }t≥0. By Lemma A.1 we get
that the term inside the time integral in the previous expression is equal to

�(N )

(N − 1)2
∑

x<y∈�N

(
G
( x
N

)− G
( y
N

))2
p(x − y)(ηy(s�(N )) − ηx (s�(N )))2

+ κ�(N )

(N − 1)2N θ

∑

x∈�N

(
G
( x
N

))2
(1 − 2ηx (s�(N )))r−

N ( x
N )(α − ηx (s�(N )))

+ κ�(N )

(N − 1)2N θ

∑

x∈�N

(
G
( x
N

))2
(1 − 2ηx (s�(N )))r+

N ( x
N )(β − ηx (s�(N ))).

(3.12)

Since the first derivative of G is bounded it is easy to see that the absolute value of
(3.12) is bounded from above by a constant times

�(N )

(N − 1)4
∑

x,y∈�N

(x − y)2 p(x − y)

+ κ�(N )

(N − 1)2N θ

∑

x∈�N

(
G
( x
N

))2 (
r−
N ( x

N ) + r+
N ( x

N )
)
.

(3.13)

Note that (x − y)2 p(x − y) � 1 because γ > 1, so that

�(N )

(N − 1)4
∑

x,y∈�N

(x − y)2 p(x − y) � �(N )N−2 = O(N γ−2).

By (3.10), the remaining terms in (3.13) are O(�(N )N−θ−2) so that (3.13) is
O(N γ−2).
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Thus, since τ is a stopping time and γ < 2, we have that

lim
δ→0

lim sup
N→∞

sup
τ∈TT ,τ̄≤δ

EμN

[(
MN ,G

τ − MN ,G
τ+τ̄

)2]

= lim
δ→0

lim sup
N→∞

sup
τ∈TT ,τ̄≤δ

EμN

[∫ τ+τ̄

τ

�(N )
[
LN 〈πN

s ,G〉2 − 2〈πN
s ,G〉LN 〈πN

s ,G〉
]
ds

]

= 0.

Therefore, we have proved (3.7) for functions G in C2
c ((0, 1)) and as we have

said in the beginning of the subsection this is enough to conclude tightness. ��

3.3. Energy Estimate

We prove in this subsection that any limit point Q of the sequence {QN }N≥1
is concentrated on trajectories πκ

t (u)du with finite energy, i.e., πκ belongs to
L2(0, T ;H γ /2). Moreover, we prove that πκ

t satisfies item (ii) in Definition 2.3.
The latter is the content of Theorem 3.2 stated below. Fix a limit point Q of the
sequence {QN }N≥1 and assume, without of loss of generality, that the sequence
QN converges to Q as N goes to ∞.

Theorem 3.2. The probability measure Q is concentrated on trajectories of mea-
sures of the form πκ

t (u)du, such that for any interval I ⊂ [0, T ] the density πκ

satisfies

(i)
∫
I ‖πκ

t ‖2γ /2dt � |I |(κ + 1), if θ = 0.

(ii)
∫

I

∫ 1

0

{
(α − πκ

t (u))2

uγ
+ (β − πκ

t (u))2

(1 − u)γ

}
du dt � |I |κ1

κ
, if θ ≤ 0.

Remark 3.3. It follows from item (i) of the previous and from Theorem 8.2 of [13]
that πκ

t is, P almost surely, γ−1
2 -Hölder for all t ∈ I .

By taking I = [0, T ] in item (i) of Theorem 3.2 we can see that πκ ∈
L2(0, T ;H γ /2). Moreover, from item (ii) of Theorem 3.2, we claim that

∫

I
‖πκ

t − ρ̄∞‖2V1dt � |I |κ + 1

κ
, (3.14)

where ρ̄∞ is given in Remark 2.7. Note that

∫

I
‖πκ

t − ρ̄∞‖2V1dt = cγ γ −1
∫

I

∫ 1

0

{
(πκ

t (u) − ρ̄∞(u))2

uγ

+ (πκ
t (u) − ρ̄∞(u))2

(1 − u)γ

}
dudt.

(3.15)
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By summing and subtracting α inside the first square in the expression on the right
hand side in (3.15), β in the second one and using the fact that (a+b)2 ≤ 2(a2+b2)
we get that (3.15) is bounded from above by

2cγ γ −1
∫

I

∫ 1

0

{
(πκ

t (u) − α)2

uγ
+ (πκ

t (u) − β)2

(1 − u)γ

}
dudt

+ 2cγ γ −1
∫

I

∫ 1

0

{
(α − ρ̄∞(u))2

uγ
+ (β − ρ̄∞(u))2

(1 − u)γ

}
dudt.

(3.16)

Now, by using item ii) of Theorem 3.2 we have that the first term in the previous

expression is bounded by constant times |I |κ + 1

κ
. Finally, using the definition of

ρ̄∞ (see Remark 2.7) the second term in (3.16) is equal to

2cγ γ −1(β − α)2|I |
∫ 1

0
(uγ + (1 − u)γ )−1du � 1.

Before we prove Theorem 3.2, we establish some estimates on the Dirichlet
form which are needed in due course.

3.3.1. Estimates on the Dirichlet Form Let h : [0, 1] → [0, 1] be a function
such that α ≤ h(u) ≤ β, for all u ∈ [0, 1], and assume that h(0) = α and h(1) = β.
Let νN

h be the inhomogeneous Bernoulli product measure on 
N with marginals
given by

νN
h {η : ηx = 1} = h

( x
N

)
.

We denote by HN (μ|νN
h ) the relative entropy of a probability measure μ on


N with respect to the probability measure νN
h . It is easy to prove the existence of

a constant C0, such that

HN (μN |νN
h ) ≤ C0N (3.17)

(see for example [4]). We remark here that the restriction α �= 0 and β �= 1
comes from last estimate since the constant C0 given above is given by C0 =
− log(α ∧ (1 − β)). On the other hand, for a probability measure μ on 
N and a
density function f : 
N → [0,∞) with respect to μ we introduce

D0
N (
√

f , μ) := 1

2

∑

x,y∈�N

p(y − x) Ix,y(
√

f , μ), (3.18)

D�
N (
√

f , μ) :=
∑

x∈�N

∑

y≤0

p(y − x) I α
x (
√

f , μ) =
∑

x∈�N

r−
N

( x
N

)
I α
x (
√

f , μ)

(3.19)

and Dr
N (

√
f , μ) is the same as D�

N (
√

f , μ) but in I α
x (

√
f , μ) the parameter α is

replaced by β and r−
N is replaced by r+

N . Above, we used the following notation:

Ix,y(
√

f , μ) :=
∫ (√

f (σ x,yη) −√
f (η)

)2
dμ,
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I α
x (
√

f , μ) :=
∫

cx (η;α)
(√

f (σ xη) −√
f (η)

)2
dμ,

where cx (η, α) is given in (2.4) with ϕ(·) ≡ α; and I β
x is the same as I α

x when the
parameter α is replaced by β.

Our goal is to express, for the measure νN
h , a relation between the Dirichlet

form defined by 〈LN
√

f ,
√

f 〉νN
h
and the quantity

DN (
√

f , νN
h ) := (D0

N + κN−θ D�
N + κN−θ Dr

N )(
√

f , νN
h ).

More precisely, we have the following result:

Lemma 3.4. For any positive constant B and any density function f with respect
to νN

h , there exists a constant C > 0 (independent of f and N) such that

�(N )

N B
〈LN

√
f ,
√

f 〉νN
h

≤ −�(N )

4N B
DN (

√
f , νN

h ) + C�(N )

N B

∑

x,y∈�N

p(y − x)
(
h( x

N ) − h(
y
N )
)2

+ Cκ�(N )

N θ+1B

∑

x∈�N

{(
h( x

N ) − α
)2
r−
N ( x

N ) +
(
h( x

N ) − β
)2
r+
N ( x

N )

}
.

(3.20)

The proof of this statement is similar to the one in Section 5 of [4] and thus it is
omitted.Moreover, note that as a consequence of the previous lemma, for a function
h such that α ≤ h(u) ≤ β and h Lipschitz we have that

�(N )

N B
〈LN

√
f ,
√

f 〉νN
h

≤ −�(N )

4N B
DN (

√
f , νN

h ) + �(N )N−γ C(κN−θ+1)
B .

(3.21)

Lemma 3.5. For any density f with respect to νN
h , any x ∈ �N and any positive

constant Ax , we have that

∣∣∣〈ηx − α, f 〉νN
h

∣∣∣ � 1

4Ax
I α
x (
√

f , νN
h ) + Ax + ∣∣h( x

N ) − α
∣∣ .

The same result holds if α is replaced by β.

The proof of Lemma 3.5 is omitted since is similar to the one of Lemma 5.5 in
[4]. Note that in the case α ≤ h ≤ β and Lipschitz we get

∣∣∣〈ηx − α, f 〉νN
h

∣∣∣ � 1

4Ax
I α
x (
√

f , νN
h ) + Ax + x

N
.
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3.3.2. Proof ofTheorem3.2 First item:πκ ∈ L2(0, T ;H γ /2) Q-almost surely.
Recall that in this case θ = 0 and the system is speeded up in the sub-diffusive time
scale �(N ) = N γ . Let ε > 0 be a small real number. Let F ∈ C0,∞

c (I × [0, 1]2),
where the I is a subinterval of [0, T ]. Observe that by the entropy inequality

EμN

⎡

⎢⎢⎣

∫

I
N γ−1

∑

x,y∈�N|x−y|≥εN

Ft (
x
N ,

y
N )p(y − x)(ηy(t N

γ ) − ηx (t N
γ ))dt

⎤

⎥⎥⎦

is bounded from above by

C0 + 1

N
log

∫ [
eEη[| ∫I NGN (t,ηt Nγ )dt |]

]
νN
h (dη), (3.22)

where

GN (t, η) = N γ−1
∑

x,y∈�N|x−y|≥εN

Ft (
x
N ,

y
N )p(y − x)(ηy − ηx ),

and by Jensen’s inequality we can bound last expression from above by

C0 + 1

N
logEνN

h

[
e| ∫I NGN (t,ηt Nγ )dt |

]
. (3.23)

Since e|x | ≤ ex + e−x and

lim sup
N→∞

1
N log(aN + bN ) ≤ max

{
lim sup
N→∞

1
N log(aN ), lim sup

N→∞
1
N log(bN )

}
,

we can remove the absolute value from expression (3.23). By Feynman–Kac’s
formula (see Lemma 7.3 in [1]), we finally have that

EμN

⎡

⎢⎢⎢⎣

∫

I
Nγ−1

∑

x,y∈�N|x−y|≥εN

Ft (
x
N ,

y
N )p(y − x)(ηy(t N

γ ) − ηx (t N
γ ))dt

⎤

⎥⎥⎥⎦

≤ C0 +
∫

I
sup
f

{
Nγ−1

∑

x,y∈�N|x−y|≥εN

Ft (
x
N ,

y
N )p(y − x)

∫
(ηy − ηx ) f (η)dνNh

+ Nγ−1
〈
LN

√
f ,
√

f
〉

νN
h

}
dt,

(3.24)
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where the supremum is taken over all densities f on 
N with respect to νN
h . Note

that, by a change of variables, we have that

N γ−1
∑

x,y∈�N|x−y|≥εN

Ft
( x
N ,

y
N

)
p(y − x)

∫
(ηy − ηx ) f (η)dνN

h

= N γ−1
∑

x,y∈�N|x−y|≥εN

Fa
t ( x

N ,
y
N )p(y − x)

∫
(ηy − ηx ) f (η)dνN

h

= N γ−1
∑

x,y∈�N|x−y|≥εN

Fa
t ( x

N ,
y
N )p(y − x)

∫
ηy
(
f (η) − f (σ x,yη)

)
dνN

h

+ N γ−1
∑

x,y∈�N|x−y|≥εN

Fa
t ( x

N ,
y
N )p(y − x)

∫
ηx f (η)

(
θ x,y(η) − 1

)
dνN

h ,

(3.25)

where θ x,y(η) = dνN
h (σ x,yη)

dνN
h (η)

and Fa is the antisymmetric part of F , i.e. for all t ∈ I

and (u, v) ∈ [0, 1]2

Fa
t (u, v) = 1

2

[
Ft (u, v) − Ft (v, u)

]
.

Observe that Fa
t (u, u) = 0. By Young’s inequality, the fact that f is a density and

|ηy | ≤ 1, we have that, for any A > 0, the third term in (3.25) is bounded from
above by a constant times

N γ−1A
∑

x,y∈�N|x−y|≥εN

(
Fa
t

(
x
N ,

y
N

))2
p(y − x) + N γ−1

A

∑

x,y∈�N|x−y|≥εN

p(y − x)Ix,y(
√

f , νN
h )

≤ cγ A

N 2

∑

x,y∈�N|x−y|≥εN

(
Fa
t

(
x
N ,

y
N

))2

| xN − y
N |1+γ

+ 2N γ−1

A
D0

N (
√

f , νN
h ).

Since h is Lipschitz we have that supη∈
N
|θ x,y(η) − 1| = O

( |x−y|
N

)
. By Young’s

inequality and the fact that f is a density, for any A
′
> 0, the last term in (3.25) is

bounded from above by

N γ−1

A′
∑

x,y∈�N|x−y|≥εN

(
Fa
t

(
x
N ,

y
N

))2
p(y − x) + A

′
N γ−1

∑

x,y∈�N|x−y|≥εN

p(y − x)
( |x−y|

N

)2

= cγ

A′N 2

∑

x,y∈�N|x−y|≥εN

(
Fa
t

(
x
N ,

y
N

))2

| xN − y
N |1+γ

+ A
′
cγ

N 2

∑

x,y∈�N|x−y|≥εN

1

| xN − y
N |γ−1

.
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Recall (3.21), so that by choosing A = 8 and B = 1 and using the two results
above we have just proved that (3.24) is bounded from above by C0 plus

cγ (8 + 1
A′ )

N 2

∑

x �=y∈�N

[
Fa
t ( x

N ,
y
N )
]2

| xN − y
N |1+γ

+ C(κ + 1) + cγ A
′
A

′′
,

where

A
′′ := sup

ε>0
sup
N≥1

1

N 2

∑

x,y∈�N|x−y|≥εN

1

| xN − y
N |γ−1

< ∞

since γ < 2. Therefore, we have proved that there exist constants A
′′′
and B

′

(independent of ε > 0, N ≥ 1, and F ∈ C∞
c (I × [0, 1]2)) such that

EμN

[ ∫

I
N γ−1

∑

x,y∈�N|x−y|≥εN

Ft (
x
N ,

y
N )p(y − x)(ηN

y (t) − ηN
x (t)) dt

]

= EμN

[∫

I
−2cγ 〈πN

t , gNt 〉 dt
]

≤
∫

I

A
′′′

N 2

∑

x,y∈�N|x−y|≥εN

cγ

(
Fa
t ( x

N ,
y
N )
)2

| xN − y
N |1+γ

dt + B
′ |I |(κ + 1).

(3.26)

Above the function gN is defined on I × [0, 1] by

gNt (u) = 1

N

∑

y∈�N

1∣∣ y
N −u

∣∣≥ε

Fa
t

(
u,

y
N

)

|u − y
N |1+γ

and it is a discretization of the smooth function g defined on (t, u) ∈ I × [0, 1] by

gt (u) =
∫ 1

0
1{|v−u|≥ε}

Fa
t (u, v)

|u − v|1+γ
dv.

Let Qε = {(u, v) ∈ [0, 1]2 ; |u− v| ≥ ε}. Observe first that for symmetry reasons
we have that, for any integrable function π ,

∫ 1

0
π(u)gt (u)du =

∫∫

Qε

(π(v) − π(u))Fa
t (u, v)

|u − v|1+γ
dudv.

By taking the limit as N → ∞ in (3.26), we conclude that there exist constants
C > 0 independent of F ∈ C0,∞

c (I × [0, 1]2) and ε > 0 such that

EQ

[∫

I

∫∫

Qε

(πκ
t (v) − πκ

t (u))Fa
t (u, v)

|u − v|1+γ

−C

(
Fa
t (u, v)

)2

|u − v|1+γ
dudvdt

]
� |I |(κ + 1).
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Using similar arguments as to the ones in the proof of Lemma 6.1 of [4], we can
insert the supremum over F inside the expectation above, so that

EQ

[
sup
F

{∫

I

∫∫

Qε

(πκ
t (v) − πκ

t (u))Fa
t (u, v)

|u − v|1+γ

−C

(
Fa
t (u, v)

)2

|u − v|1+γ
dudvdt

}]
� |I |(κ + 1).

Since the function (u, v) ∈ [0, 1]2 → π(v) − π(u) is antisymmetric we may
replace Fa by F in the previous variational formula, i.e.

EQ

[
sup
F

{∫

I

∫∫

Qε

(πκ
t (v) − πκ

t (u))Ft (u, v)

|u − v|1+γ

−C

(
Ft (u, v)

)2

|u − v|1+γ
dudvdt

}]
� |I |(κ + 1).

(3.27)

Consider theHilbert spaceL
2([0, 1]2, dμε)whereμε is themeasurewhose den-

sity with respect to Lebesguemeasure is given by (u, v) ∈ [0, 1]2 → �|u−v|≥ε |u−
v|−(1+γ ). By taking

�κ : (t; u, v) ∈ I × [0, 1]2 → πκ
t (v) − πκ

t (u),

the previous formula implies that

EQ

[∫

I

∫∫

[0,1]2
(
�κ

t (u, v)
)2 dμε(u, v)dt

]
� |I |(κ + 1). (3.28)

Letting ε → 0, by the monotone convergence theorem, we conclude that

∫

I

∫∫

[0,1]2
(πκ

t (v) − πκ
t (u))2

|u − v|1+γ
dudvdt < ∞,

Q almost surely.

Second item:
∫

I

∫ 1

0

{
(α − πκ

t (u))2

uγ
+ (β − πκ

t (u))2

(1 − u)γ

}
du dt < ∞ Q almost

surely. Now we have to prove that the function (t, u) → πκ
t (u) − α is in the

space L2(I × (0, 1), dt ⊗ dμ), where μ is the measure whose density with respect
to the Lebesgue measure is given by

u ∈ (0, 1) → 1

uγ
.

A similar argument to the one used in the first item shows that the function (t, u) →
πκ
t (u)−β belongs to L2([0, T ]× (0, 1), dt ⊗dμ′), whereμ′ is the measure whose

density with respect to the Lebesgue measure is given by

u ∈ [0, 1] → 1

(1 − u)γ
.
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Let νN
h be the Bernoulli product measure corresponding to a profile h which

is Lipschitz such that h(0) = α ≤ h(u) ≤ β = h(1) for all u ∈ [0, 1]. Let
G ∈ C∞

c (I × [0, 1]). As in the beginning of the proof of Theorem 3.2, using the
entropy and Jensen’s inequalities we get that

EμN

⎡

⎣
∫

I
N γ−1

∑

x∈�N

Gtr
−
N

(
x
N

)
(ηx (t�(N )) − α)dt

⎤

⎦

≤ HN (μN |νN
h )

N
+ 1

N
logEμN

[
e
N | ∫I Nγ−1∑

x∈�N
Gtr

−
N

(
x
N

)
(ηx (t�(N ))−α)dt |

]
.

Now, using (3.17) and Feynman–Kac’s formula (see Lemma 7.3 of [1]) we obtain
that

EμN

⎡

⎣
∫

I
N γ−1

∑

x∈�N

Gtr
−
N

(
x
N

)
(ηx (t�(N )) − α)dt

⎤

⎦

≤ C0 +
∫

I
sup
f

⎧
⎨

⎩N γ−1
∑

x∈�N

(Gtr
−
N )
(

x
N

)
〈ηx − α, f 〉νN

h

+�(N )N−1
〈
LN

√
f ,
√

f
〉

νN
h

}
dt, (3.29)

where the supremun is taken over all the densities f on 
N with respect to νN
h .

Using (3.21) with B = 1 we can bound from above the second term on the right
hand side of (3.29) by

−�(N )

4N
DN (

√
f , νN

h ) + C�(N )N−γ (κN−θ + 1),

and from Lemma 3.5 with Ax = 1
κ
Gt

( x
N

)
the first term on the right side of (3.29)

is bounded from above by

CN γ−1

κ

∑

x∈�N

r−
N

(
x
N

) (
Gt

(
x
N

))2 + C(κ + 1).

Taking N → ∞ we can conclude that there exists a constant C ′ > 0 independent
of G and of t such that

EQ

[∫

I

∫ 1

0

(
(πκ

t (u) − α)Gt (u)

|u|γ − C ′

κ

G2
t (u)

|u|γ
)
dudt

]
� |I |(κ + 1).

From Lemma 6.1 in [4] we can insert the supremum over G inside the expectation
above, and we get
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EQ

[
sup
G

{∫

I

∫ 1

0

(
(πκ

t (u) − α)Gt (u)

|u|γ − C ′

κ

G2
t (u)

|u|γ
)
dudt

}]
� |I |(κ + 1).

(3.30)

The previous formula implies that
∫

I

∫ 1

0

(πκ
t (u) − α)2

|u|γ dudt < ∞,

Q almost surely. Similarly, we get
∫

I

∫ 1

0

(πκ
t (u) − β)2

|u|γ dudt < ∞,

Q almost surely.

Conclusion. By Definition 2.3, the two steps above allow us to show that Q is
concentrated on trajectories of measures whose density is a weak solution of the
corresponding hydrodynamic equation (see Proposition 3.6). By uniqueness of the
weak solution (see Lemma 2.8) we get that Q is unique. Indeed, we have that
Q = δ{ρκ

t (u)du} (Dirac mass). Then, by using the latter, we compute the expectation
in (3.28) and (3.30) and we are done. ��

3.4. Characterization of Limit Points

In the present subsection we characterize all limit points Q of the sequence
{QN }N≥1, which we know that exist from the results of Section 3.2. Let us as-
sume without loss of generality, that {QN }N≥1 converges to Q. Since there is at
most one particle per site, it is easy to show that Q is concentrated on trajecto-
ries of measures absolutely continuous with respect to the Lebesgue measure, i.e.
πκ
t (du) = ρκ

t (u)du. Indeed, for any t ∈ [0, T ] and for any functionG : [0, 1] → R

we have that

|〈πN
t ,G〉| ≤ 1

N − 1

∑

x∈�N

|G( xn )|.

Also, we know that for any continuous function G the functional π ∈ M+ →
〈π,G〉 is continuous. Then, taking N → ∞, we obtain that

|〈πt ,G〉| ≤
∫ 1

0
|G(u)|du.

which implies that πt is absolutely continuous with respect to the Lebesgue mea-
sure. In Proposition 3.6 below we prove, for each range of θ , thatQ is concentrated
on trajectories ofmeasureswhose density satisfies aweak formof the corresponding
hydrodynamic equation. Moreover, we have seen in Theorem 3.2 that Q is concen-
trated on trajectories of measures whose density satisfies the energy estimate, i.e.
ρκ ∈ L2(0, T ;H γ /2) when θ = 0 and

∫ T

0

∫ 1

0

{
(α − ρκ

t (u))2

uγ
+ (β − ρκ

t (u))2

(1 − u)γ

}
dudt < ∞
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for any θ ≤ 0. Since a weak solution of the hydrodynamic equation (2.10) is unique
we have that Q is unique and takes the form of a Dirac mass.

Proposition 3.6. If Q is a limit point of {QN }N≥1 then

1. if θ < 0:

Q

(
π· : FReac(t, ρ

κ ,G, g) = 0,∀t ∈ [0, T ], ∀G ∈ C1,2
c ([0, T ] × [0, 1])

)
= 1.

2. if θ = 0:

Q

(
π· : FDir (t, ρ

κ ,G, g) = 0,∀t ∈ [0, T ], ∀G ∈ C1,2
c ([0, T ] × [0, 1])

)
= 1.

Proof. Note that in order to prove the proposition, it is enough to verify, for δ > 0
and G in the corresponding space of test functions, that

Q

(
π· ∈ DT

M+ : sup
0≤t≤T

∣∣Fθ (t, ρ
κ ,G, g)

∣∣ > δ

)
= 0,

for each θ , where Fθ stands for FReac if θ < 0 and FDir if θ = 0 . Indeed, we have
that

Fθ (t, ρ
κ ,G, g) = 〈

ρκ
t ,Gt

〉− 〈g,G0〉 −
∫ t

0

〈
ρκ
s ,
(
∂s + 1{θ=0}L

)
Gs

〉
ds

+ 1{θ≤0}κ
∫ t

0

〈
ρκ
s ,Gs

〉
V1

ds − 1{θ≤0}κ
∫ t

0
〈Gs, V0〉 ds = 0.

(3.31)

From here on, in order to simplify notation, we will erase π· from the sets that
we have to look at.

By definition of Fθ above we can bound from above the previous probability
by the sum of

Q

(
sup

0≤t≤T

∣∣Fθ (t, ρ
κ ,G, ρ0)

∣∣ >
δ

2

)
(3.32)

and

Q

(
|〈ρ0 − g,G0〉| >

δ

2

)
.

We note that last probability is equal to zero since Q is a limit point of {QN }N≥1
and QN is induced by μN which is associated to g. Now we deal with (3.32). Since
for θ ≤ 0 the function Gs has compact support included in (0, 1) the singularities
of V0 and V1 are not present, thus from Proposition A.3 of [14], the set inside
the probability in (3.32) is an open set in the Skorohod topology. Therefore, from
Portmanteau’s Theorem we bound (3.32) from above by

lim inf
N→∞ QN

(
sup

0≤t≤T

∣∣Fθ (t, ρ
κ ,G, ρ0)

∣∣ >
δ

2

)
.
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Summing and subtracting
∫ t

0
�(N )LN 〈πN

s ,Gs〉ds to the term inside the previous

absolute value, recalling (3.1) and the definition of QN , we can bound the previous
probability from above by the sum of the next two terms

PμN

(
sup

0≤t≤T

∣∣∣MN
t (G)

∣∣∣ >
δ

4

)

and

PμN

(
sup

0≤t≤T

∣∣∣∣
∫ t

0
�(N )LN 〈πN

s ,Gs〉ds −
∫ t

0

〈
πN
s ,1{θ=0}LGs

〉
ds

+ 1{θ≤0}κ
∫ t

0
〈ρs,Gs〉V1 ds −1{θ≤0}κ

∫ t

0
〈Gs, V0〉 ds

∣∣∣∣ >
δ

4

)
.

(3.33)

By Doob’s inequality we have that

PμN

(
sup

0≤t≤T

∣∣∣MN
t (G)

∣∣∣ >
δ

4

)
� 1

δ2
EμN

[∫ T

0
�(N )

[
LN 〈πN

s ,G〉2

− 2〈πN
s ,G〉LN 〈πN

s ,G〉
]
ds
]
.

In the proof of Proposition 3.1 we have proved that the term inside the time
integral in the previous expression is O(N γ−2). Then, using the fact that γ < 2
we have that last probability vanishes as N → ∞. It remains to prove that (3.33)
vanishes as N → ∞. For that purpose, we recall (3.2) and we bound (3.33) from
above by the sum of the following terms:

PμN

⎛

⎝ sup
0≤t≤T

∣∣∣∣∣∣

∫ t

0

�(N )

N − 1

∑

x∈�N

LNGs(
x
N )ηN

x (s)ds

−
∫ t

0

〈
πN
s ,1{θ=0}LGs

〉
ds

∣∣∣∣ >
δ

24

)
, (3.34)

PμN

⎛

⎝ sup
0≤t≤T

∣∣∣∣∣∣

∫ t

0

⎧
⎨

⎩
κ�(N )

N θ (N − 1)

∑

x∈�N

(Gsr
−
N )( x

N )(α − ηN
x (s))

−1{θ≤0}κ
∫ 1

0
(Gsr

−)(u)(α − ρκ
s (u))du

}
ds

∣∣∣∣ >
δ

24

)
(3.35)

and

PμN

⎛

⎝ sup
0≤t≤T

∣∣∣∣∣∣

∫ t

0

⎧
⎨

⎩
κ�(N )

N θ (N − 1)

∑

x∈�N

(Gsr
+
N )( x

N )(β − ηN
x (s)) (3.36)

−1{θ≤0}κ
∫ 1

0
(Gsr

+)(u)(β − ρκ
s (u))du

}
ds

∣∣∣∣ >
δ

24

)
. (3.37)
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For θ = 0 from (3.6) we have that (3.34) goes to 0 as N → ∞. For θ ≤ 0 we have
that from (3.6) and 3.5 the boundary terms (3.35) and (3.36) go to 0 as N → ∞.
This finishes the proof Proposition 3.6. ��

4. Proof of Theorem 2.13

For easy understanding of the proof of items (i) and (ii) of Theorem 2.13, we
first establish some notation and prove some lemmata.

Recall the function ρ̄∞ introduced in Remark 2.7 which can be rewritten as

ρ̄∞(u) = βuγ + α(1 − u)γ

uγ + (1 − u)γ
.

It is easy to see that ρ̄∞(0) = α and ρ̄∞(1) = β. Moreover, it is not difficult to see
that ρ̄∞ ∈ C1([0, 1]) and that

lim
u→0

(ρ̄∞(u))′u2−γ = lim
u→1

(ρ̄∞(u))′(1 − u)2−γ = 0,

and from Lemma 7.2 of [15] we conclude that

‖ρ̄∞‖γ /2 < ∞. (4.1)

By the fractional Hardy’s inequality (see e.g. [12]) and the fact that V1( 12 ) ≤
V1(u) for all u ∈ (0, 1) we know that

‖g‖ � ‖g‖V1 � ‖g‖γ /2 (4.2)

for any g ∈ H
γ /2
0 , and where ‖g‖V1 is defined in the beginning of Section 2.3.

In order to prove items (i) and (ii) of Theorem 2.13 we first guarantee the
existence of weak solutions of Equation (2.10) with κ = 0 and (2.12), (see Lemmas
4.1 and 4.3 below), thenwe establish the convergence in L2(0, T ; L2) (see Lemmas
4.2 and 4.4) which will allow us to conclude.

Lemma 4.1. Let ρ0 : [0, 1] → [0, 1] be a measurable function. Then, there exists
a weak solution of (2.10) with κ̂ = 0 and initial condition ρ0.

Proof. The strategy of the proof is to construct the solution as the limit of ρκ , as
κ → 0, where ρk is the weak solution of (2.10) with initial condition ρ0 and κ̂ = κ .

By item i) in Theorem 3.2, for any κ > 0 we know that
∫

I
‖ρκ

t ‖2γ /2dt � |I |(κ + 1) (4.3)

for any interval I ⊂ [0, T ]. We define

∀t ∈ [0, T ], ∀u ∈ [0, 1], ϕκ
t (u) := ρκ

t (u) − ρ̄∞(u). (4.4)
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Since we are interested in small values of κ , say κ ≤ 1, from (4.3), (4.1) and the
fact (a + b)2 ≤ 2a2 + 2b2, it is not difficult to see that

∫

I
‖ϕκ

t ‖2γ /2dt � |I |, (4.5)

thus we have that ϕκ ∈ L2(0, T ;H γ /2
0 ). It is also easy to see that ϕκ satisfies

〈ϕκ
t ,Gt 〉 − 〈ϕ0,G0〉 −

∫ t

0

〈
ϕκ
s , (L + ∂s)Gs

〉
ds

+ κ

∫ t

0
〈ϕκ

s ,Gs〉V1ds −
∫ t

0
〈ρ̄∞, LGs〉ds = 0 (4.6)

for all t ∈ [0, T ], for any function G ∈ C1,∞
c ([0, T ] × (0, 1)) and where ϕ0(u) =

ρ0(u) − ρ̄∞(u). From (4.5) we conclude that there exists a subsequence of
(ϕκ)κ∈(0,1) converging weakly to some element ϕ0 ∈ L2(0, T ;H γ /2

0 ) as κ → 0.
We claim that ρ0 := ρ̄∞ + ϕ0 is the desired solution. Indeed, first note that since
the norm ‖ · ‖γ /2 is weakly lower-semicontinuous we have that

∫

I
‖ϕ0

t ‖2γ /2dt � |I |. (4.7)

By using (a + b)2 ≤ 2a2 + 2b2 we have that
∫

I
‖ρ0

t ‖2γ /2dt ≤ 2
∫

I
‖ρ̄∞‖2γ /2dt + 2

∫

I
‖ϕ0

t ‖2γ /2dt � |I |.

Taking I = [0, T ], we have that ρ0 satisfies item i) of Definition 2.3. Since ϕ0 ∈
L2(0, T ;H γ /2

0 ), it is easy to see that ρ0
t (0) = ρ̄∞(0) = α and ρ0

t (1) = ρ̄∞(1) =
β for almost every t ∈ [0, T ]. Then, item (ii) for κ̂ = 0 in Definition 2.3 is satisfied.
In order to verify that ρ0 satisfies item (iii) in Definition 2.3 we first integrate (4.6)
over [0, t]. Thus we have that

∫ t

0
〈ϕκ

s ,Gs〉ds − t〈ϕ0,G0〉 −
∫ t

0

∫ s

0

〈
ϕκ
r , (L + ∂r )Gr

〉
drds

+ κ

∫ t

0

∫ s

0
〈ϕκ

r ,Gr 〉V1drds −
∫ t

0

∫ s

0
〈ρ̄∞, LGr 〉drds = 0

for any function G ∈ C1,∞
c ([0, T ] × (0, 1)). Taking κ → 0, by weak convergence

and Lebesgue’s dominated convergence theorem we get from the previous equality
that
∫ t

0
〈ϕ0

s ,Gs〉ds − t〈ϕ0,G0〉 −
∫ t

0

∫ s

0

〈
ϕ0
r , (L + ∂r )Gr

〉
− 〈ρ̄∞, LGr 〉drds = 0.

Now, taking the derivative with respect to t in the previous equality we get that ϕ0

satisfies

〈ϕ0
t ,Gt 〉 − 〈ϕ0,G0〉 −

∫ t

0
〈ϕ0

s ,
(
L + ∂s

)
Gs〉 ds −

∫ t

0
〈ρ̄∞, LGs〉ds = 0 (4.8)

for all t ∈ [0, T ]. Then, item (iii) with κ = 0 in Definition 2.3 follows from (4.8),
the definition of ρ0 and ρ̄∞ ��
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Lemma 4.2. Let ρ0 : [0, 1] → [0, 1] be a measurable function. Let ρκ be the weak
solution of (2.10) with initial condition ρ0 and κ̂ = κ . Then, ρκ converges strongly
to ρ0 in L2(0, T ; L2) as κ goes to 0, where ρ0 is the weak solution of (2.10) with
κ̂ = 0 and initial condition ρ0.

Proof. Note that is enough to show that
∫ t

0
‖ρκ

s − ρ0
s ‖2 ds � t2κ

for all t ∈ [0, T ]. By Lemma 4.1 we know that ρ0 = ρ̄∞+ϕ0. Then, last inequality
is equivalent to

∫ t

0
‖ϕκ

s − ϕ0
s ‖2 ds � t2κ. (4.9)

By subtracting (4.8) from (4.6) and calling δkt := ϕκ
t − ϕ0

t we obtain that

〈δκ
t ,Gt 〉 −

∫ t

0

〈
δκ
s , (L + ∂s)Gs

〉
ds = −κ

∫ t

0
〈ϕκ

s ,Gs〉V1ds (4.10)

for any functionG ∈ C1,∞
c ([0, T ]×(0, 1)). Let {Hκ

n }n≥1 be a sequence of functions
in C1,∞

c ([0, T ] × (0, 1)) converging to δκ as n → ∞ with respect to the norm of
L2(0, T ;H γ /2

0 ) and for n ≥ 1, let Gκ
n(s, u) = ∫ t

s Hκ
n (r, u)dr . We claim that by

plugging Gn into (4.10) and taking n → ∞ we get that

∫ t

0
‖δκ

s ‖2 ds + 1

2

∥∥∥∥
∫ t

0
δκ
s ds

∥∥∥∥
2

γ /2
= −κ

∫ t

0

〈
ϕκ
s ,

∫ t

s
δκ
r dr

〉

V1

ds. (4.11)

We leave the justification of the equality above to the end of the proof. Now, by
using successively the Cauchy–Schwarz’s inequality we have that

∫ t

0
‖δκ

s ‖2 ds + 1

2

∥∥∥∥
∫ t

0
δκ
s ds

∥∥∥∥
2

γ /2
≤ κ

∫ t

0
‖ϕκ

s ‖V1
∥∥∥∥
∫ t

s
δκ
r dr

∥∥∥∥
V1

ds

� κ

√∫ t

0
‖ϕκ

s ‖2γ /2ds

√√√√
∫ t

0

∥∥∥∥
∫ t

s
δκ
r dr

∥∥∥∥
2

γ /2
ds.

(4.12)

In the last inequality of the previous expression we used (4.2). By the triangular

inequality we have that

√∫ t
0

∥∥∥
∫ t
s δκ

r dr
∥∥∥
2

γ /2
ds is bounded from above by

√∫ t

0

(∫ t

s
‖δκ

r ‖γ /2dr

)2

ds ≤
√

t
∫ t

0

∫ t

0
‖δκ

r ‖2γ /2drds

�

√

t2
∫ t

0

(
‖ϕκ

r ‖2γ /2 + ‖ϕ0
r ‖2γ /2

)
dr .

(4.13)



A Microscopic Model for a One Parameter Class 31

In the first inequality in the previous display we used the Cauchy–Schwarz’s in-
equality and in the second inequality we used the Minkowski’s inequality and the
inequality (a + b)2 ≤ 2(a2 + b2). Using (4.5) and (4.7), we get from (4.12) and
(4.13) the result.

We conclude this proof justifying (4.11). Note that it is enough to show

(i) lim
n→∞

∫ t

0
〈δκ

s , (∂sG
κ
n)(s, ·)〉ds = −

∫ t

0
‖δκ

s ‖2ds.

(ii) lim
n→∞

∫ t

0
〈δκ

s , LGκ
n(s, ·)〉ds = −1

2

∥∥∥
∫ t

0
δκ
s ds

∥∥∥
2

γ /2
.

(iii) lim
n→∞

∫ t

0

〈
ϕκ
s ,Gκ

n(s, ·)
〉
V1

ds =
∫ t

0

〈
ϕκ
s ,

∫ t

s
δκ
r dr

〉

V1

ds.

For (i) we rewrite
∫ t
0 〈δκ

s , (∂sGκ
n)(s, ·)〉ds as

−
∫ t

0
〈δκ

s , Hκ
n (s, ·)〉 ds = −

∫ t

0

〈
δκ
s , Hκ

n (s, ·) − δκ
s

〉
ds −

∫ t

0
‖δκ

s ‖2 ds.

Observe then that by Cauchy–Schwarz’s inequality we have

∣∣∣∣
∫ T

0

〈
δκ
s , Hκ

n (s, ·) − δκ
s

〉
ds

∣∣∣∣ ≤
∫ T

0
‖δκ

s ‖ ‖Hκ
n (s, ·) − δκ

s ‖ ds

≤
√∫ T

0
‖δκ

s ‖2 ds
√∫ T

0
‖Hκ

n (s, ·) − δκ
s ‖2 ds,

which goes to 0 as n → ∞ since Hκ
n → δκ

s in L2(0, T ;H γ /2
0 ). For (ii), since Gn

has compact support included in (0, 1), we can use the integration by parts formula
for the regional fractional Laplacian (see Theorem 3.3 in [15]) which permits us to
write

∫ t

0
〈δκ

s , LGκ
n(s, ·)〉ds = −

∫ t

0

〈
δκ
s ,Gκ

n(s, ·)
〉

γ /2
ds.

Then we have
∫ t

0

〈
δκ
s ,Gκ

n(s, ·)
〉

γ /2
ds =

∫ t

0

〈
δκ
s ,

∫ t

s
δκ
r dr

〉

γ /2
ds

+
∫ t

0

〈
δκ
s ,Gκ

n(s, ·) −
∫ t

s
δκ
r dr

〉

γ /2
ds

=
∫∫

0≤s<r≤t
〈δκ

s , δκ
r 〉γ /2 dsdr +

∫ t

0

〈
δκ
s ,

∫ t

s

(
Hκ
n (r, ·) − δκ

r

)
dr
〉

γ /2
ds

= 1

2

∫∫

[0,t]2
〈δκ

s , δκ
r 〉γ /2 dsdr +

∫ t

0

〈
δκ
s ,

∫ t

s

(
Hκ
n (r, ·) − δκ

r

)
dr
〉

γ /2
ds

= 1

2

∥∥∥
∫ t

0
δκ
s ds

∥∥∥
2

γ /2
+

∫ t

0

〈
δκ
s ,

∫ t

s

(
Hκ
n (r, ·) − δκ

r

)
dr
〉

γ /2
ds.
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To conclude the proof of (ii) it is sufficient to show that the term at the right hand side
of last expression vanishes as n goes to ∞. This is a consequence of a successive
use of Cauchy–Schwarz’s inequalities:

∣∣∣∣
∫ t

0

〈
δκ
s ,

∫ t

s

(
Hκ
n (r, ·) − δκ

r

)
dr
〉

γ /2
ds

∣∣∣∣

≤
∫ t

0

∥∥∥δκ
s

∥∥∥
γ /2

∥∥∥
∫ t

s

(
Hκ
n (r, ·) − δκ

r

)
dr
∥∥∥

γ /2
ds

≤
∫ t

0

∥∥∥δκ
s

∥∥∥
γ /2

∫ t

s

∥∥∥Hκ
n (r, ·) − δκ

r

∥∥∥
γ /2

dr ds

≤
∫ t

0

∥∥∥δκ
s

∥∥∥
γ /2

∫ t

0

∥∥∥Hκ
n (r, ·) − δκ

r

∥∥∥
γ /2

dr ds

=
(∫ t

0

∥∥∥δκ
s

∥∥∥
γ /2

ds

) (∫ t

0

∥∥∥Hκ
n (r, ·) − δκ

r

∥∥∥
γ /2

dr

)

≤ t

√∫ t

0

∥∥∥δκ
s

∥∥∥
2

γ /2
ds

√∫ t

0

∥∥∥Hκ
n (r, ·) − δκ

r

∥∥∥
2

γ /2
dr −−−→

n→∞ 0.

(4.14)

To prove iii) we rewrite
∫ t
0 〈ϕκ

s ,Gκ
n(s, ·)〉V1ds as

∫ t

0

〈
ϕκ
s ,

∫ t

s

(
Hκ
n (r, ·) − δκ

r

)
dr

〉

V1

ds +
∫ t

0

〈
ϕκ
s ,

∫ t

s
δκ
r dr

〉

V1

ds

and, to conclude the proof, it is sufficient to show that the term at the left hand side
of last expression vanishes as n → ∞. This is a consequence of a successive use
of the Cauchy–Schwarz’s inequality as in (4.14), with ‖ · ‖γ /2 replaced by ‖ · ‖V1
and Hardy’s inequality:

∣∣∣∣
∫ t

0

〈
ϕκ
s ,

∫ t

s
{Hκ

n (r, ·) − δκ
r }dr

〉

V1
ds

∣∣∣∣

≤
∫ t

0

∥∥∥ϕκ
s

∥∥∥
V1

∥∥∥
∫ t

s

(
Hκ
n (r ·) − δκ

r

)
dr
∥∥∥
V1

ds

≤
∫ t

0

∥∥∥ϕκ
s

∥∥∥
V1

∫ t

s

∥∥∥Hκ
n (r, ·) − δκ

r

∥∥∥
V1

dr ds

≤
∫ t

0

∥∥∥ϕκ
s

∥∥∥
V1

∫ t

0

∥∥∥Hκ
n (r, ·) − δκ

r

∥∥∥
V1

dr ds

=
(∫ t

0

∥∥∥ϕκ
s

∥∥∥
V1
ds

) (∫ t

0

∥∥∥Hκ
n (r, ·) − δκ

r

∥∥∥
V1

dr

)

≤ t

√∫ t

0

∥∥∥ϕκ
s

∥∥∥
2

V1
ds

√∫ t

0

∥∥∥Hκ
n (r, ·) − δκ

r

∥∥∥
2

V1
dr

≤ Ct

√∫ t

0

∥∥∥ϕκ
s

∥∥∥
2

γ /2
ds

√∫ t

0

∥∥∥Hκ
n (r, ·) − δκ

r

∥∥∥
2

γ /2
dr −−−→

n→∞ 0,

where in the last inequality we used the fractional Hardy’s inequality (see (4.2)).
��
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Lemma 4.3. Let ρ0 : [0, 1] → [0, 1] be a measurable function. Consider the
function ρ∞

t = ρ̄∞ + (ρ0 − ρ̄∞)e−tV1 . If g∞ := ρ0 − ρ̄∞ ∈ H γ /2, then

(i) ρ∞ ∈ L2(0, T ;H γ /2) ;
(ii) ρ∞ is a weak solution of (2.12) with initial condition ρ0.

Proof. For (i) note that by using the inequality (a + b)2 ≤ 2a2 + 2b2 we get that

∫ T

0
‖ρ∞

t ‖2γ /2dt ≤ 2T ‖ρ̄∞‖2γ /2 + 2
∫ T

0

∥∥∥g∞e−tV1
∥∥∥
2

γ /2
dt.

Since ‖ρ̄∞‖γ /2 < ∞ (see (4.1)) it is enough to prove that the term on the right

hand side of last expression is finite. Note that
∥∥g∞e−tV1

∥∥2
γ /2 is equal to

cγ

2

∫∫

[0,1]2

(
g∞(u)e−tV1(u) − g∞(v)e−tV1(v)

)2

|u − v|γ+1 dudv

= cγ

2

∫∫

[0,1]2

(
g∞(u)

(
e−tV1(u) − e−tV1(v)

)+ (g∞(u) − g∞(v)) e−tV1(v)
)2

|u − v|γ+1 dudv.

Using the fact that (a + b)2 ≤ 2a2 + 2b2 and that |g∞(u)| ≤ 2 for any u ∈ [0, 1]
we get that last expression is less than 8‖e−tV1‖2γ /2+2‖g∞‖2γ /2.Note that the term

8‖e−tV1‖2γ /2 can be written as

4cγ

∫∫

[0,1]2

(∫ u
v

−tV ′
1(w)e−tV1(w)dw

)2

|u − v|γ+1 dudv

= 4cγ

∫∫

[0,1]2

(∫ u
v
t
(

γ
w
r−(w) − γ

1−w
r+(w)

)
e−tV1(w)dw

)2

|u − v|γ+1 dudv.

Again using (a + b)2 ≤ 2a2 + 2b2 and the fact that e−tV1(w) ≤ e−tr±(w) for any
w ∈ [0, 1], we get that the last expression is bounded from above by

8cγ

∫∫

[0,1]2

(∫ u
v

γ
w
tr−(w)e−tr−(w)dw

)2

|u − v|γ+1 +
(∫ u

v
γ

1−w
tr+(w)e−tr+(w)dw

)2

|u − v|γ+1 dudv

= 16cγ

∫∫

[0,1]2

(∫ u
v

γ
w
tr−(w)e−tr−(w)dw

)2

|u − v|γ+1 dudv.

In the last equality we used a symmetry argument. We can write the last expression
as

Cγ t
2−2γ

γ

∫∫

[0,1]2

( ∫ u
v

wγ−2(tr−(w))
2γ−1

γ e−tr−(w)dw
)2

|u − v|γ+1 dudv,
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where Cγ = 16c
2−γ
γ

γ γ
4γ−2

γ . Since the function Eγ : [0,∞) → [0,∞) defined

as Eγ (z) = z
2γ−1

γ e−z is bounded from above by Eγ

(
2γ−1

γ

)
we can bound last

expression from above by

Cγ t
2−2γ

γ E2
γ (

2γ−1
γ

)

∫∫

[0,1]2

(∫ u
v

wγ−2dw
)2

|u − v|γ+1 dudv

= Cγ t
2−2γ

γ E2
γ (

2γ−1
γ

)(γ − 2)−2
∫∫

[0,1]2

(
uγ−1 − vγ−1

)2

|u − v|γ+1 dudv,

which is finite from (7.2) in the proof of Lemma 7.2 of [15]. Thus, we have that

8‖e−tV1‖2γ /2 � t
2−2γ

γ . (4.15)

Therefore, if g∞ ∈ H γ /2, we conclude that

∫ T

0
‖ρ∞

t ‖2γ /2dt � T ‖ρ̄∞‖2γ /2 + T
∥∥g∞∥∥2

γ /2 +
∫ T

0
t
2−2γ

γ dt

� T ‖ρ̄∞‖2γ /2 + T
∥∥g∞∥∥2

γ /2 + T
2−γ
γ ,

which is finite, since γ < 2.
For (ii), since ρ∞ is the solution of (2.12) then it satisfies item (ii) of Definition

2.6. In order to see that ρ∞ satisfies item i) of Definition 2.6, note that using
(a + b)2 ≤ 2a2 + 2b2 we have that

∫ T

0

∫ 1

0

((
α − ρ∞

t (u)
)2

uγ
+
(
β − ρ∞

t (u)
)2

(1 − u)γ

)
dudt

≤ 2T
∫ 1

0

(
(α − ρ̄∞(u))2

uγ
+ (β − ρ̄∞(u))2

(1 − u)γ

)
du + 8γ

cγ

∫ T

0
‖e−tV1‖2V1dt

= 2T (β − α)2
∫ 1

0

(
uγ + (1 − u)γ

)
du + 8γ

cγ

∫ T

0
‖e−tV1‖2V1dt

≤ 2γ (β − α)2T + 8γ

cγ

∫ T

0
‖e−tV1‖2V1dt.

For the term on the right hand side of last expression we first see that we can extend
continuously the function e−tV1 in such a way that it vanishes at 0 and at 1. There
exists a constant C2 (see 4.2) such that the previous expression is bounded from
above by

2γ (β − α)2T + 8γC2
2

cγ

∫ T

0
‖e−tV1‖2γ /2dt. (4.16)

Thus, we obtain the desired result by using (4.15). ��
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Lemma 4.4. Let ρ0 : [0, 1] → [0, 1] be a measurable function, such that ρ0 −
ρ̄∞ ∈ H γ /2. Furthermore, let ρκ and ρ∞ be the weak solutions of (2.10) and
(2.12), respectively, and with the same initial condition ρ0. Let ρ̂κ

t := ρκ
t/κ , for all

t ∈ [0, T ]. Then ρ̂κ converges strongly to ρ∞ in L2(0, T ; L2), as κ goes to ∞.

Proof. It is enough to show that

∫ t

0
‖ρ̂κ

s − ρ∞
s ‖2 ds =

∫ t

0
‖ϕ̂κ

s − ϕ∞
s ‖2 ds � 1√

κ
(4.17)

for all t ∈ [0, T ] where ϕ̂κ
t = ρ̂κ

t − ρ̄∞ and ϕ∞
t = (ρ0 − ρ̄∞)e−tV1 . It is not

difficult to see that ϕ̂κ
t satisfies

〈ϕ̂κ
t ,Gt 〉 − 〈ϕ0,G0〉 −

∫ t

0
〈ϕ̂κ

s , ∂sGs〉 ds +
∫ t

0
〈ϕ̂κ

s ,Gs〉V1ds

− 1

κ

∫ t

0
〈ρ̂κ

s , LGs〉ds = 0

(4.18)

for all functions G ∈ C1,∞
c ([0, T ] × (0, 1)). Then, stating that δ̂k := ϕ̂κ − ϕ∞, we

have that

〈δ̂κ
t ,Gt 〉 −

∫ t

0

〈
δ̂κ
s ,

(
1

κ
L + ∂s

)
Gs

〉
ds +

∫ t

0

〈
δ̂κ
s ,Gs

〉

V1

= 1

κ

∫ t

0
〈ρ∞

s ,Gs〉γ /2ds

(4.19)

for any function G ∈ C1,∞
c ([0, T ] × (0, 1)). Let {Ĥκ

n }n≥1, be a sequence of
functions in C1,∞

c ([0, T ], (0, 1)) converging to δ̂κ with respect to the norm of
L2(0, T ;H γ /2

0 ).Now, forn ≥ 1wedefine the test function Ĝκ
n(s, u) = ∫ t

s Ĥκ
n (r, u)

dr . Plugging Ĝκ
n into (4.19) and using a similar argument as in proof of Lemma

4.2 we get that

∫ t

0
‖δ̂κ

s ‖2 ds + 1

2κ

∥∥∥∥
∫ t

0
δ̂κ
s ds

∥∥∥∥
2

γ /2
+ 1

2

∥∥∥∥
∫ t

0
δ̂κ
s ds

∥∥∥∥
2

V1

= 1

κ

∫ t

0

〈
ρ∞
s ,

∫ t

s
δ̂κ
r dr

〉

γ /2
ds.

By neglecting terms we get that

∫ t

0
‖ρ̂κ

s − ρ∞
s ‖2 ds =

∫ t

0
‖δ̂κ

s ‖2 ds ≤ 1

κ

∫ t

0

〈
ρ∞
s ,

∫ t

s
δ̂κ
r dr

〉

γ /2
ds.

Then it is suffices to show that

1

κ

∫ t

0

〈
ρ∞
s ,

∫ t

s
δ̂κ
r dr

〉

γ /2
ds � 1√

κ
.
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To do this, we start by twice using Cauchy–Schwarz’s inequality so that the term
at the left hand side of the previous expression is bounded from above by

1

κ

∫ t

0
‖ρ∞

s ‖γ /2

∥∥∥∥
∫ t

s
δ̂κ
r dr

∥∥∥∥
γ /2

ds ≤ 1

κ

√∫ t

0
‖ρ∞

s ‖2γ /2ds

√√√√
∫ t

0

∥∥∥∥
∫ t

s
δ̂κ
r dr

∥∥∥∥
2

γ /2
ds.

Since by hypothesis ρ0 − ρ̄∞ ∈ H γ /2 we know from item (i) of Lemma 4.3 that
ρ∞ ∈ L2(0, T ;H γ /2). Thus, from the latter, and by the triangular inequality, the
right hand side in the previous expression can be bounded from above by a constant
time

1

κ

√∫ t

0

(∫ t

s
‖δ̂κ

r ‖γ /2dr

)2

ds � 1

κ

√

t

(∫ t

0
‖δ̂κ

r ‖γ /2dr

)2

.

By using Cauchy–Schwarz’s inequality again, the term on the right hand side in
the last expression is bounded from above by

1

κ

√

t2
∫ t

0
‖δ̂κ

r ‖2γ /2dr = 1

κ

√

t2
∫ t

0
‖ρ̂κ

r − ρ∞
r ‖2γ /2dr

� 1

κ

√

2t2
∫ t

0
‖ρ̂κ

r ‖2γ /2 + ‖ρ∞
r ‖2γ /2dr .

In the last inequalitywe used theMinkowski’s inequality and the fact that (a+b)2 ≤
2a2 + 2b2. Now, since

∫ t
0 ‖ρ̂κ

r ‖2γ /2dr � κ (this is due to item (i) of Theorem 3.2

and a change of variables) and ρ∞ ∈ L2(0, T ;H γ /2), we can see that

1

κ

√

2t2
∫ t

0
‖ρ̂κ

r ‖2γ /2 + ‖ρ∞
r ‖2γ /2dr � 1

κ

√
κ + 1 � 1√

κ
,

and we are done. ��

4.1. Proof of Item (i) of Theorem 2.13.

Recall ϕκ
t defined in (4.4). Note that it is enough to show (4.9) with ‖·‖ replaced

with ‖ · ‖γ /2. From (4.10) we obtain, for ε > 0, that

〈δκ
t+ε,Gt+ε〉 − 〈δκ

t ,Gt 〉 −
∫ t+ε

t
〈δκ

s , (L + ∂s)Gs〉 ds = −κ

∫ t+ε

t
〈ϕκ

s ,Gs〉V1ds
(4.20)

for any function G ∈ C1,∞
c ([0, T ] × [0, 1]). Let {Hκ

n }n≥1 be a sequence of
functions in C1,∞

c ([0, T ], (0, 1)) converging to δκ with respect to the norm of
L2(0, T ;H γ /2

0 ) as n → ∞. Now, for n ≥ 1, we define the test function Gκ
n(u) =
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1
ε

∫ t+ε

t Hκ
n (r, u)dr . Plugging Gκ

n into last equality and taking n → ∞, a similar
argument to the one of the proof of Lemma 4.2 allows us to get

1

ε

〈
δκ
t+ε − δκ

t ,

∫ t+ε

t
δκ
r dr

〉
+ ε

∥∥∥∥
1

ε

∫ t+ε

t
δκ
r dr

∥∥∥∥
2

γ /2

= κ

∫ t+ε

t

〈
ϕκ
s ,

1

ε

∫ t+ε

t
δκ
r dr

〉

V1

ds.

Integrating last equality over [0, t̃], we get

ε

∫ t̃

0

∥∥∥∥
1

ε

∫ t+ε

t
δκ
r dr

∥∥∥∥
2

γ /2
dt = κ

∫ t̃

0

∫ t+ε

t

〈
ϕκ
s ,

1

ε

∫ t+ε

t
δκ
r dr

〉

V1

ds dt

− 1

ε

∫ t̃

0

〈
δκ
t+ε − δκ

t ,

∫ t+ε

t
δκ
r dr

〉
dt. (4.21)

Now we use Cauchy–Schwarz’s inequality, Hardy’s inequality and (4.5) to get that

κ

∫ t̃

0

∫ t+ε

t

〈
ϕκ
s ,

1

ε

∫ t+ε

t
δκ
r dr

〉

V1

ds dt

� κ

∫ t̃

0

∫ t+ε

t
‖ϕκ

s ‖γ /2

∥∥∥∥
1

ε

∫ t+ε

t
δκ
r dr

∥∥∥∥
γ /2

ds dt

� κ

√∫ t̃

0

∫ t+ε

t
‖ϕκ

s ‖2γ /2dsdt

√√√√
∫ t̃

0

∫ t+ε

t

∥∥∥∥
1

ε

∫ t+ε

t
δκ
r dr

∥∥∥∥
2

γ /2
ds dt

� κε
√
t̃

√√√√
∫ t̃

0

∥∥∥∥
1

ε

∫ t+ε

t
δκ
r dr

∥∥∥∥
2

γ /2
dt . (4.22)

Let us estimate the second term on the right hand side (4.21). First note that by
changing variables we have that

− 1

ε

∫ t̃

0

〈
δκ
t+ε − δκ

t ,

∫ t+ε

t
δκ
r dr

〉
dt

= 1

ε

∫ t̃

0

∫ t+ε

t
〈δκ

t , δκ
r 〉drdt − 1

ε

∫ t̃

0

∫ t+ε

t
〈δκ

t+ε, δ
κ
r 〉drdt

= 1

ε

∫ t̃

0

∫ r+ε

r
〈δκ

t , δκ
r 〉dtdr − 1

ε

∫ t̃+ε

ε

∫ t

t−ε

〈δκ
t , δκ

r 〉drdt.

(4.23)

The term 1
ε

∫ t̃
0

∫ r+ε

r 〈δκ
t , δκ

r 〉dtdr can be split as

1

ε

(∫ ε

0

∫ ε

r
〈δκ

t , δκ
r 〉dtdr +

∫ ε

0

∫ r+ε

ε

〈δκ
t , δκ

r 〉dtdr +
∫ t̃

ε

∫ r+ε

r
〈δκ

t , δκ
r 〉dtdr

)
.
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By Fubini’s theorem, we have that the term 1
ε

∫ t̃+ε

ε

∫ t
t−ε

〈δκ
t , δκ

r 〉drdt , which appears
in (4.23), is equal to

1

ε

(∫ ε

0

∫ r+ε

ε

〈δκ
t , δκ

r 〉dtdr +
∫ t̃

ε

∫ r+ε

r
〈δκ

t , δκ
r 〉dtdr +

∫ t̃+ε

t̃

∫ t̃+ε

r
〈δκ

t , δκ
r 〉dtdr

)
.

Therefore we can write the second term on the right hand side of (4.21) as

− 1

ε

∫ t̃+ε

t̃

∫ t̃+ε

r
〈δκ

t , δκ
r 〉dt dr + 1

ε

∫ ε

0

∫ ε

r
〈δκ

t , δκ
r 〉dt dr

≤ 1

ε

∫ t̃+ε

t̃

∫ t̃+ε

t̃
‖δκ

t ‖‖δκ
r ‖dt dr + 1

ε

∫ ε

0

∫ ε

0
‖δκ

t ‖‖δκ
r ‖dt dr

= 1

ε

(∫ t̃+ε

t̃
‖δκ

t ‖ dt
)2

+ 1

ε

(∫ ε

0
‖δκ

t ‖ dt
)2

≤
∫ t̃+ε

t̃
‖δκ

t ‖2dt +
∫ ε

0
‖δκ

t ‖2dt,

(4.24)

where in the inequalities above we used Cauchy–Schwarz’s inequality. Then, using
(4.22) and (4.24) in (4.21), we obtain that

∫ t̃

0

∥∥∥∥
1

ε

∫ t+ε

t
δκ
r dr

∥∥∥∥
2

γ /2
dt � κ

√
t̃

√√√√
∫ t̃

0

∥∥∥∥
1

ε

∫ t+ε

t
δκ
r dr

∥∥∥∥
2

γ /2
dt

+ 1

ε

∫ t̃+ε

t̃
‖δκ

t ‖2dt + 1

ε

∫ ε

0
‖δκ

t ‖2dt.
(4.25)

Taking ε → 0, using Lebesgue’s differentiation theorem (see Theorem 1.35 in
[22]) and the fact that δκ

0 = 0 (since the initial condition for ρκ and ρ0 is the same)
we get that

∫ t̃

0
‖δκ

t ‖2γ /2dt � κ
√
t̃

√∫ t̃

0
‖δκ

t ‖2γ /2dt + ‖δκ
t̃ ‖2,

for all t̃ ∈ [0, T ]. Integrating the last inequality over [0, T ] and using Cauchy–
Schwarz’s inequality and (4.9), we conclude that

∫ T

0

∫ t̃

0
‖δκ

t ‖2γ /2dtdt̃ � κT

√∫ T

0

∫ t̃

0
‖δκ

t ‖2γ /2dtdt̃ + κT 2. (4.26)

Then, by a simple computation, we have that

∫ T

0

∫ t̃

0
‖δκ

t ‖2γ /2dtdt̃ � κT 2. (4.27)
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By Fubini’s theorem, we get that
∫ T

0

∫ t̃

0
‖δκ

t ‖2γ /2 dtdt̃ =
∫ T

0
(T − t)‖δκ

t ‖2γ /2 dt ≥ T

2

∫ T/2

0
‖δκ

t ‖2γ /2 dt.

(4.28)

The result now follows from (4.27) and (4.28). ��

4.2. Proof of Item (ii) of Theorem 2.13

Recall ϕ̂κ
t and ϕ∞

t defined in Lemma 4.4. It is enough to show (4.17) with ‖ · ‖
replaced with ‖ · ‖V1 :

∫ T

0
‖ϕ̂κ

t − ϕ∞
t ‖2V1 dt � 1√

κ
. (4.29)

From (4.19), we obtain, for ε > 0, that

〈δ̂κ
t+ε,Gt+ε〉 − 〈δ̂κ

t ,Gt 〉 −
∫ t+ε

t
〈δ̂κ

s ,
( 1
κ

L + ∂s

)
Gs〉 ds

+
∫ t+ε

t
〈δ̂κ

s ,Gs〉V1 ds = 1

κ

∫ t+ε

t
〈ρ∞

s ,Gs〉γ /2ds (4.30)

for any function G ∈ C1,∞
c ([0, T ] × [0, 1]). Let {Ĥκ

n }n≥1 be a sequence of
functions in C1,∞

c ([0, T ], (0, 1)) converging to δ̂κ with respect to the norm of
L2(0, T ;H γ /2

0 ) as n → ∞. Now, for n ≥ 1 we define the test functions Ĝκ
n(u) =

1
ε

∫ t+ε

t Ĥκ
n (r, u)dr . Plugging Ĝκ

n into (4.30) and taking n → ∞, a similar argument
to the one of the proof of Lemma 4.2 allows us to get

1

ε

〈
δ̂κ
t+ε − δ̂κ

t ,

∫ t+ε

t
δ̂κ
r dr

〉
+ ε

κ

∥∥∥∥
1

ε

∫ t+ε

t
δ̂κ
r dr

∥∥∥∥
2

γ /2

+ ε

∥∥∥∥
1

ε

∫ t+ε

t
δ̂κ
r dr

∥∥∥∥
2

V1

= 1

κ

∫ t+ε

t

〈
ρ∞
s ,

1

ε

∫ t+ε

t
δ̂κ
r dr

〉

γ /2
ds. (4.31)

By neglecting the term
ε

κ

∥∥∥ 1
ε

∫ t+ε

t δ̂κ
r dr

∥∥∥
2

γ /2
in (4.31) and then integrating over

[0, t̃] we get that

ε

∫ t̃

0

∥∥∥∥
1

ε

∫ t+ε

t
δ̂κ
r dr

∥∥∥∥
2

V1

dt ≤ 1

κ

∫ t̃

0

∫ t+ε

t

〈
ρ∞
s ,

1

ε

∫ t+ε

t
δ̂κ
r dr

〉

γ /2
ds dt

− 1

ε

∫ t̃

0

〈
δ̂κ
t+ε − δ̂κ

t ,

∫ t+ε

t
δ̂κ
r dr

〉
dt. (4.32)

Now we use Cauchy–Schwarz’s inequality twice in order to get that the first term
on the right hand side in the previous expression is bounded from above by

1

κ

∫ t̃

0

∫ t+ε

t
‖ρ∞

s ‖γ /2

∥∥∥∥
1

ε

∫ t+ε

t
δ̂κ
r dr

∥∥∥∥
γ /2

ds dt
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≤ 1

κ

√∫ t̃

0

∫ t+ε

t
‖ρ∞

s ‖2γ /2dsdt

√√√√
∫ t̃

0

∫ t+ε

t

∥∥∥∥
1

ε

∫ t+ε

t
δ̂κ
r dr

∥∥∥∥
2

γ /2
ds, dt

≤
√

ε

κ

√∫ t̃

0

∫ t+ε

t
‖ρ∞

s ‖2γ /2dsdt

√√√√
∫ t̃

0

∥∥∥∥
1

ε

∫ t+ε

t
δ̂κ
r dr

∥∥∥∥
2

γ /2
dt . (4.33)

By a similar argument as to the one in the proof of item i) of Theorem 2.13, we
have that the second term on the right hand side in (4.32) is bounded from above
by

1

ε

∫ t̃+ε

t̃
‖δ̂κ

t ‖2dt + 1

ε

∫ ε

0
‖δ̂κ

t ‖2dt. (4.34)

Therefore, by using (4.33) and (4.34) in (4.32), we get that

∫ t̃

0

∥∥∥∥
1

ε

∫ t+ε

t
δ̂κ
r dr

∥∥∥∥
2

V1

dt

≤ 1

κ

√∫ t̃

0

1

ε

∫ t+ε

t
‖ρ∞

s ‖2γ /2dsdt

√√√√
∫ t̃

0

∥∥∥∥
1

ε

∫ t+ε

t
δ̂κ
r dr

∥∥∥∥
2

γ /2
dt

+ 1

ε

∫ t̃+ε

t̃
‖δ̂κ

t ‖2dt + 1

ε

∫ ε

0
‖δ̂κ

t ‖2dt. (4.35)

Taking ε → 0, using Lebesgue’s differentiation theorem (see Theorem 1.35 in
[22]) and the fact that δ̂κ

0 = 0 we get that

∫ t̃

0
‖δ̂κ

t ‖2V1dt ≤ 1

κ

√∫ t̃

0
‖ρ∞

t ‖2γ /2dt

√∫ t̃

0
‖δ̂κ

t ‖2γ /2dt + ‖δ̂κ
t̃ ‖2

for all t̃ ∈ [0, T ]. Integrating the previous expression over [0, T ] and using the
Cauchy–Schwarz’s inequality we get that

∫ T

0

∫ t̃

0
‖δ̂κ

t ‖2V1dtdt̃ ≤ 1

κ

√∫ T

0

∫ t̃

0
‖ρ∞

t ‖2γ /2dtdt̃

√∫ T

0

∫ t̃

0
‖δ̂κ

t ‖2γ /2dtdt̃

+
∫ T

0
‖δ̂κ

t̃ ‖2dt̃

� 1

κ

√∫ T

0

∫ T

0
‖δ̂κ

t ‖2γ /2dtdt̃ + 1√
κ

,

� 1

κ

√

2T
∫ T

0
‖ρ̂κ

t ‖2γ /2 + ‖ρ∞
t ‖2γ /2dt + 1√

κ
,

� 1

κ

√
(κ + 2) + 1√

κ
.

(4.36)
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In the second inequality above we used the fact that ρ∞ ∈ L2(0, T ;H γ /2) (see
item i)ofLemma4.3) and (4.29),while in the third inequality ofweusedMinkoski’s
inequality and the fact that (a + b)2 ≤ 2a2 + 2b2. Finally, the last inequality of
(4.36) is true, since ρ∞ ∈ L2(0, T ;H γ /2) and item i) of Theorem 3.2.

Then, by a simple computation, we have that
∫ T

0

∫ t̃

0
‖δ̂κ

t ‖2V1dtdt̃ � 1√
κ

. (4.37)

By Fubini’s theorem, we have that
∫ T

0

∫ t̃

0
‖δ̂κ

t ‖2V1 dtdt̃ =
∫ T

0
(T − t)‖δ̂κ

t ‖2V1 dt ≥ T

2

∫ T/2

0
‖δ̂κ

t ‖2V1 dt. (4.38)

The result now follows from (4.37) and (4.38). ��

5. Proof of Theorem 2.15

In this sectionweprove items (i) and (ii) of Theorem2.15.Nowwe are interested
in analyzing the convergence of the stationary solution ρ̄κ as κ → 0 and κ → ∞.
From Definition 2.9, for κ ≥ 0, and for ϕ̄κ = ρ̄κ − ρ̄∞ we have that ϕ̄κ ∈ H

γ /2
0

and

〈ϕ̄κ ,−LG〉 + κ〈ϕ̄κ ,G〉V1 = Iρ̄∞(G) (5.1)

for any test functionG of compact support included in (0, 1).Above Iρ̄∞ : H γ /2
0 →

R is a linear form defined by Iρ̄∞(G) = 〈ρ̄∞, LG〉. Moreover, this linear form is
continuous. Indeed, using integration by parts given in Proposition 3.3 in [15] we
have that

|Iρ̄∞(G)| =
∣∣∣∣
∫ 1

0
ρ̄∞(u)LG(u)du

∣∣∣∣

= cγ

2

∣∣∣∣
∫∫

[0,1]2
(ρ̄∞(u) − ρ̄∞(v))(G(u) − G(v))

|u − v|γ+1 dvdu

∣∣∣∣

≤ ‖ρ̄∞‖γ /2‖G‖γ /2 < ∞.

(5.2)

Above we used Cauchy–Schwarz’s inequality and the fact that ‖ρ̄∞‖γ /2 is finite
(see (4.1)). Therefore, |Iρ∞(G)| � ‖G‖

H γ /2
0

.

Then it is enough to analyze the behavior of ϕ̄κ . We claim that we can take
G = ϕ̄κ in (5.1). The justification is postponed to the end of the proof. Whence,
from (5.2), we have that

‖ϕ̄κ‖2γ /2 + κ‖ϕ̄κ‖2V1 = Iρ̄∞(ϕ̄κ ) � ‖ϕ̄κ‖γ /2, (5.3)

from which we conclude that ‖ϕ̄κ‖γ /2 < ∞. Plugging this back into (5.3) we get
that

‖ϕ̄κ‖V1 � 1√
κ

. (5.4)
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Now, note that ϕ̄0 ∈ H
γ /2
0 satisfies 〈ϕ̄0,−LG〉 = Iρ̄∞(G), for any function

G ∈ C∞
c ((0, 1)). Then ϕ̄κ − ϕ̄0 satisfies

〈ϕ̄κ − ϕ̄0,−LG〉 + κ〈ϕ̄κ ,G〉V1 = 0

for any function G ∈ C∞
c ((0, 1)). We claim that we can take G = ϕ̄κ − ϕ̄0 in the

previous equality. The proof is analogous to the one done at the end of this section.
Thus, we get that

‖ϕ̄κ − ϕ̄0‖2γ /2 = κ〈ϕ̄κ , ϕ̄0 − ϕ̄κ 〉V1 ≤ κ‖ϕ̄κ‖V1‖ϕ̄κ − ϕ̄0‖V1 .
From (5.4) and fractional Hardy’s inequality given in (4.2) we have that

‖ϕ̄κ − ϕ̄0‖2γ /2 �
√

κ‖ϕ̄κ − ϕ̄0‖V1 �
√

κ‖ϕ̄κ − ϕ̄0‖γ /2,

from which we conclude that ‖ϕ̄κ − ϕ̄0‖γ /2 �√
κ. Then ϕ̄κ converges to ϕ̄0, as

κ → 0 in the ‖ · ‖γ /2 norm. So far we have proved item (i).

Remark 5.1. From the fractional Hardy’s inequality (see 4.2) the convergence is
also true in L2

V1
, and since

‖ϕ̄κ − ϕ̄0‖V1 ≥ V1(
1
2 )‖ϕ̄κ − ϕ̄0‖,

we conclude that the convergence also holds in L2.

For item (ii), by (5.4) we get that ‖ϕ̄κ‖V1 → 0, and so ‖ϕ̄κ‖ → 0 as k → ∞.
We conclude this proof by showing that we can take G = ϕ̄κ in (5.1). Indeed,

sinceC∞
c ((0, 1)) is dense inH γ /2

0 , there exists a sequence {H̄κ
n }n≥1 inC∞

c ((0, 1))
converging to ϕ̄κ , i.e, ‖H̄κ

n − ϕ̄κ‖γ /2 → 0 as n → ∞. Observe that as a result of
the latter and (4.2) we also have ‖H̄κ

n − ϕ̄κ‖V1 → 0 as n → ∞. Using Cauchy–
Schwarz’s inequality we have that

〈ϕ̄κ , H̄κ
n − ϕ̄κ 〉γ /2 ≤ ‖ϕ̄κ‖γ /2‖H̄κ

n − ϕ̄κ‖γ /2,

〈ϕ̄κ , H̄κ
n − ϕ̄κ 〉V1 ≤ ‖ϕ̄κ‖V1‖H̄κ

n − ϕ̄κ‖V1 ,
Iρ̄∞(H̄κ

n − ϕ̄κ ) ≤ ‖ρ̄∞‖γ /2‖H̄κ
n − ϕ̄κ‖γ /2,

all going to 0 as n → ∞. Thus, we can rewrite (5.1) as

〈ϕ̄κ ,−Lϕ̄κ 〉 + 〈ϕ̄κ ,−L(H̄κ
n − ϕ̄κ )〉 + κ(〈ϕ̄κ , ϕ̄κ 〉V1 + 〈ϕ̄κ , H̄κ

n − ϕ̄κ 〉V1)
= Iρ̄∞(ϕ̄κ ) + Iρ̄∞(H̄κ

n − ϕ̄κ ).

Now it is enough to take n → ∞. ��

6. Uniqueness of Weak Solutions

In this section we prove Lemmas 2.8 and 2.11. For Lemma 2.8, we only focus
in the proof of the uniqueness for the weak solutions of (2.10) for κ̂ = κ > 0. The
proof of the uniqueness of the weak solutions of (2.10) for κ = 0 and (2.12) is
analogous, the difference is that only the first two items in Lemma 6.1 below are
required. Finally, in Section 6.2 we prove Lemma 2.11.
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6.1. Proof of Lemma 2.15

Let ρκ,1 and ρκ,2 two weak solutions of (2.10) with the same initial condition
and let us denote ρ̃κ = ρκ,1−ρκ,2. For almost every t ∈ [0, T ], we identify ρ̃κ

t with
its continuous representation on [0, 1]. Therefore, by Remark 2.4 we have ρ̃κ

t (0) =
ρ̃κ
t (1) = 0. SinceH γ /2

0 is equal to the set of functions inH γ /2 vanishing at 0 and 1

wehave that ρ̃κ
t ∈ H

γ /2
0 for a.e. time t ∈ [0, T ] and, in fact, ρ̃κ ∈ L2(0, T ;H γ /2

0 ).

Moreover, for any t ∈ [0, T ] and all functions G ∈ C1,∞
c ([0, T ]× (0, 1)) we have

〈ρ̃κ
t ,Gt 〉 −

∫ t

0

〈
ρ̃κ
s ,
(
∂s + L

)
Gs

〉
ds + κ

∫ t

0

〈
ρ̃κ
s ,Gs

〉
V1

ds = 0. (6.1)

Note that, it is easy to show thatC1,∞
c ([0, T ]×(0, 1)) is dense in L2(0, T ;H γ /2

0 ).

Let {Hκ
n }n≥1 be a sequence of functions in C

1,∞
c ([0, T ]× (0, 1)) converging to ρ̃κ

with respect to the norm of L2(0, T ;H 1/2
0 ) as n → ∞. For n ≥ 1, we define the

test functions ∀t ∈ [0, T ], ∀u ∈ [0, 1], Gκ
n(t, u) = ∫ T

t Hκ
n (s, u) ds. Plugging

Gκ
n into (6.1) and letting n → ∞ we conclude by Lemma 6.1 below that

∫ T

0
‖ρ̃κ

s ‖2ds + 1

2

∥∥∥
∫ T

0
ρ̃κ
s ds

∥∥∥
2

γ /2
+ κ

2

∥∥∥
∫ T

0
ρ̃κ
s ds

∥∥∥
2

V1
= 0. (6.2)

Recall that 〈·, ·〉V1 (resp. ‖·‖V1 ) is the scalar product (resp. the norm) corresponding
to the Hilbert space L2

V1
.

Then, it follows that for almost every time s ∈ [0, T ] the continuous function
ρ̃κ
s is equal to 0 and we conclude the uniqueness of the weak solutions to (2.10).

Lemma 6.1. Let {Gκ
n}n≥1 be defined as above. We have

(i) lim
n→∞

∫ T

0

〈
ρ̃κ
s , (∂sG

κ
n)(s, ·)

〉
ds = −

∫ T

0
‖ρ̃κ

s ‖2ds;

(ii) lim
n→∞

∫ T

0

〈
ρ̃κ
s , LGκ

n(s, ·)
〉
ds = −1

2

∥∥∥
∫ T

0
ρ̃κ
s ds

∥∥∥
2

γ /2
;

(iii) lim
n→∞

∫ T

0

〈
ρ̃κ
s ,Gκ

n(s, ·)
〉
V1

ds = 1

2

∥∥∥
∫ T

0
ρ̃κ
s ds

∥∥∥
2

V1
< ∞.

Proof. The proof of this lemma is quite similar to the proof of items (i), (ii) and
(iii) in the proof of Lemma 4.2. For that reason we just sketch the main steps of the
proof and we leave the details to the reader. For (i) we have that

−
∫ T

0

〈
ρ̃κ
s , (∂sG

κ
n)(s, ·)

〉
ds =

∫ T

0

〈
ρ̃κ
s , Hκ

n (s, ·) − ρ̃κ
s

〉
ds +

∫ T

0
‖ρ̃κ

s ‖2ds, (6.3)

and by the Cauchy–Schwarz inequality,

∣∣∣∣
∫ T

0

〈
ρ̃κ
s , Hκ

n (s, ·) − ρ̃κ
s

〉
ds

∣∣∣∣ ≤
√∫ T

0
‖ρ̃κ

s ‖2 ds
√∫ T

0
‖Hκ

n (s, ·) − ρ̃κ
s ‖2 ds,

(6.4)
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which goes to 0 as n → ∞.
For (ii), we first use the integration by parts formula for the regional fractional

Laplacian (see Theorem 3.3 in [15]) to get

∫ T

0

〈
ρ̃κ
s , LGκ

n(s, ·)
〉
ds = −

∫ T

0

〈
ρ̃κ
s ,Gκ

n(s, ·)
〉

γ /2
ds,

and as in (ii) in the proof of Lemma 4.2 we have that

∫ T

0

〈
ρ̃κ
s ,Gκ

n(s, ·)
〉

γ /2
ds = 1

2

∥∥∥
∫ T

0
ρ̃κ
s ds

∥∥∥
2

γ /2

+
∫ T

0

〈
ρ̃κ
s ,

∫ T

s

(
Hκ
n (t, ·) − ρ̃κ

t

)
dt
〉

γ /2
ds.

Now, note that the term on the right hand side of last expression vanishes as n → ∞
as a consequence of a successive use of Cauchy–Schwarz’s inequalities. The proof
of (iii) is similar to the proof of (ii) by using the fractional Hardy’s inequality (see
(4.2)) and since C∞

c ((0, 1)) is dense in Hγ /2
0 we have that any g ∈ Hγ /2

0 is also
in the space L2

V1
and that (4.2) remains valid for g. In particular, we have that the

right hand side of (iii) is finite. We have

∫ T

0

〈
ρ̃κ
s ,Gκ

n(s, ·)
〉

V1
ds = 1

2

∥∥∥
∫ T

0
ρ̃κ
s ds

∥∥∥
2

V1

+
∫ T

0

〈
ρ̃κ
s ,

∫ T

s

(
Hκ
n (t, ·) − ρ̃κ

t

)
dt
〉

V1
ds.

(6.5)

To conclude the proof of (iii) it is sufficient to prove that the term on the right
hand side of last expression vanishes as n → ∞. But this is a consequence of a
successive use of the Cauchy–Schwarz inequalities and Hardy’s inequality, from
which we get

∣∣∣∣
∫ T

0

〈
ρ̃κ
s ,

∫ T

s

(
Hκ
n (t, ·) − ρ̃κ

t

)
dt
〉

V1
ds

∣∣∣∣

≤ CT

√∫ T

0

∥∥∥ρ̃κ
s

∥∥∥
2

γ /2
ds

√∫ T

0

∥∥∥Hκ
n (t, ·) − ρ̃κ

t

∥∥∥
2

γ /2
dt −−−→

n→∞ 0.

The proof of the uniqueness of the weak solutions of (2.10) for κ = 0 is analogous,
the difference is that only the first two items in Lemma 6.1 above are required. The
uniqueness of the weak solutions of (2.12) is analogous as well, in this case only
items (i) and (iii) in Lemma 6.1 above are required. ��

6.2. Proof of Lemma 2.11

Recall (5.1). As we will see below, by Lax–Milgram’s Theorem (see [6]), there
exists a unique function ϕ̄κ̂ ∈ H

γ /2
0 which is solution of (5.1). Then, it is not

difficult to see that ρ̄κ̂ := ϕ̄κ̂ + ρ̄∞ is the desired weak solution of (2.14). For
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that purpose, let aκ̂ : H
γ /2
0 × H

γ /2
0 → R be the bilinear form defined, for

G, F ∈ H
γ /2
0 , as

aκ̂ (F,G) = 〈F,G〉γ /2 + κ̂〈F,G〉V1 . (6.6)

From Lax–Milgram Theorem, in order to conclude the existence and uniqueness
it is enough to prove that aκ̂ is coercive and continuous. For κ̂ > 0, we can easily
see that

aκ̂ (G,G) ≥ min{1, κ̂V1( 12 )}
(
‖G‖2γ /2 + ‖G‖2

)
= min{1, κ̂V1( 12 )}‖G‖2

H γ /2
0

.

For κ̂ = 0, since on H
γ
0 the norms ‖ · ‖γ /2 and ‖ · ‖H γ /2 are equivalent we have

that

a0(G,G) = ‖G‖2γ /2 � ‖G‖2
H γ /2

0
.

Therefore aκ̂ is coercive for κ̂ ≥ 0. Moreover, by using the Cauchy–Schwarz’s
inequality we obtain that

|aκ̂ (F,G)| ≤ ‖F‖γ /2‖G‖γ /2 + κ̂(‖F‖V1‖G‖V1).

From the fractional Hardy’s inequality (see (4.2)) we have that

|aκ̂ (F,G)| � (κ̂ + 1)(‖F‖γ /2‖G‖γ /2)

and since on H
γ /2
0 the norms ‖ · ‖γ /2 and ‖ · ‖H γ /2 are equivalent, we conclude

that the bilinear form aκ̂ is continuous for ˆκ ≥0. This ends the proof.
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Appendix A: Computations Involving the Generator

Lemma A.1. For any x �= y ∈ �N , we have

(i) L0
N (ηxηy) = ηx L0

Nηy + ηy L0
Nηx − p(y − x)(ηy − ηx )

2,

(ii) Lr
N (ηxηy) = ηx Lr

Nηy + ηy Lr
Nηx ,

(iii) L�
N (ηxηy) = ηx L�

Nηy + ηy L�
Nηx .

Proof. For (i) we have, by definition of L0
N , that

L0
N (ηxηy) = 1

2

∑

x̄,ȳ∈�N

p(ȳ − x̄)
[
(σ x̄,ȳη)x (σ

x̄,ȳη)y − ηxηy

]

= 1

2

∑

x̄,ȳ∈�N

p(ȳ − x̄)
[
((σ x̄,ȳη)xηy − ηxηy) + ((σ x̄,ȳη)yηx − ηxηy)

+ (σ x̄,ȳη)x (σ
x̄,ȳη)y − (σ x̄,ȳη)xηy − (σ x̄,ȳη)yηx + ηxηy

]

= ηx L
0
Nηy

+ ηy L
0
Nηx + 1

2

∑

x̄,ȳ∈�N

p(ȳ − x̄)
[
(σ x̄,ȳη)x − ηx

] [
(σ x̄,ȳη)y − ηy

]

= ηx L
0
Nηy + ηy L

0
Nηx − p(y − x)(ηy − ηx )

2.

In order to prove (ii), note that
[
(σ x̄η)x − ηx

] [
(σ x̄η)y − ηy

]
is equal to zero, for

all x̄ ∈ Z. Thus, by definition of Lr
N , we have that

Lr
N (ηxηy) =

∑

x̄∈�N ,ȳ≥N

p(ȳ − x̄) [ηx̄ (1 − β) + (1 − ηx̄ )β]
[
(σ x̄η)x (σ

x̄η)y − ηxηy

]

= ηx L
r
Nηy + ηy L

r
Nηx

+
∑

x̄∈�N ,ȳ≥N

p(ȳ − x̄)

[ηx̄ (1 − β) + (1 − ηx̄ )β]
[
(σ x̄η)x − ηx

] [
(σ x̄η)y − ηy

]

= ηx L
r
Nηy + ηy L

r
Nηx .

The proof of the third expression is analogous. ��

References

1. Baldasso , R., Menezes , O., Neumann , A., Souza , R.: Exclusion process with
slow boundary. J. Stat. Phys. 167, 1112–1142, 2017

2. Basile, G., Komorowski, T., Olla, S.: Private communication, 2015
3. Bernardin , C., Jiménez-Oviedo, B.: Fractional Fick’s law for the boundary driven

exclusion process with long jumps. ALEA Lat. Am. J. Probab. Math. Stat. 14, 473–501,
2017



A Microscopic Model for a One Parameter Class 47

4. Bernardin , C., Gonçalves , P., Jiménez-Oviedo , B.: Slow to Fast infinitely ex-
tended reservoirs for the symmetric exclusion process with long jumps. Markov Pro-
cess. Relat. Fields 25, 217–274, 2019

5. Bogdan , K., Burdzy , K., Chen , Z.-Q.: Censored stable processes. Prob. Theory
Relat. fields 127, 89–152, 2003

6. Brezis , H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations.
Springer, Berlin 2010

7. Denisov , S., Klafter , J., Zaburdaev , V.: Levy walks. Rev. Mod. Phys. 87, 483,
2015

8. Dubkov , A.A., Spagnolo , B., Uchaikin , V.V.: Lévy flight superdiffusion: an in-
troduction. Int. J. Bifurc. Chaos 18, 2649, 2008

9. Dhar , A.: Heat transport in low-dimensional systems. Adv. Phys. 57, 457, 2008
10. Dhar, A., Saito, K.: Anomalous transport and current fluctuations in a model of

diffusing Levy walkers. eprint arXiv:1308.5476
11. Dhar ,A.,Saito ,K.,Derrida , B.: Exact solution of aLevywalkmodel for anomalous

heat transport. Phys. Rev. E 87, 010103(R), 2013
12. Dyda , B.: A fractional order Hardy inequality. Illinois J. Math. 48(2), 575–588, 2004
13. Di Nezza , E., Palatucci , G., Valdinoci , E.: Hitchhiker’s guide to the fractional

Sobolev spaces. Bull. Sci. Math. 136, 521–573, 2012
14. Franco , T.,Gonçalves , P.,Neumann , A.: Hydrodynamical behavior of symmetric

exclusion with slow bonds. Ann. l’Inst. Henri Poincaré Prob. Stat. 49(2), 402–427,
2013

15. Guan , Q.-Y., Ma , Z.-M.: The reflected α-symmetric stable processes and regional
fractional Laplacian. Probab. Theory Relat. Fields 134(4), 649–694, 2006

16. Kipnis , C.,Landim , C.: Scaling Limits of Interacting Particle Systems. Springer, New
York 1999

17. Kipnis , C., Landim , C., Olla , S.: Hydrodynamic limit for a non-gradient system:
the generalized symmetric exclusion process. Comm. Pure Appl. Math. 47(11), 1475–
1545, 1994

18. Kundu , A., Bernardin , C., Saito , K.,Kundu , A.,Dhar , A.: Fractional equation
description of an open anomalous heat conduction set-up. J. Stat. Mech. Theory Exp.
1, 013205, 2019

19. Lepri , S., Livi , R., Politi , A.: Thermal conduction in classical low-dimensional
lattices. Phys. Rep. 377, 1–80, 2003

20. Lepri , S., Politi , A.: Density profiles in open superdiffusive systems. Phys. Rev. E
83, 030107(R), 2011

21. Mou , C.,Yi , Y.: Interior regularity for regional fractional Laplacian. Commun. Math.
Phys 340, 233–251, 2015

22. Roubícek , T.: Nonlinear Partial Differential Equations with Applications, vol. 153.
Springer, Berlin 2013

23. Vázquez , J.L.: Recent progress in the theory of nonlinear diffusion with fractional
Laplacian operators. Discrete Contin. Dyn. Syst. Ser. S 7(4), 857–885, 2014

http://arxiv.org/abs/1308.5476


48 C. Bernardin et al.

C. Bernardin
CNRS, LJAD Parc Valrose,
Université Côte d’Azur,
06108 NICE Cedex 02

France.
e-mail: cbernard@unice.fr

and

P. Gonçalves
Patrícia Gonçalves Center for Mathematical Analysis,

Geometry and Dynamical Systems, Instituto Superior Técnico,
Universidade de Lisboa,

Av. Rovisco Pais,
1049-001 Lisbon

Portugal.
e-mail: pgoncalves@tecnico.ulisboa.pt

and

UMS 839 (CNRS/UPMC),
Institut Henri Poincaré,

11 Rue Pierre et Marie Curie,
75231 Paris Cedex 05

France.

and

B. Jiménez-Oviedo
Escuela de Matemática, Facultad de Ciencias Exactas y Naturales,

Universidad Nacional de Costa Rica,
Heredia

Costa Rica.
e-mail: byron.jimenez.oviedo@una.cr

(Received May 7, 2019 / Accepted June 19, 2020)
Published online July 7, 2020

© Springer-Verlag GmbH Germany, part of Springer Nature (2020),
corrected publication 2020


	A Microscopic Model for a One Parameter Class of Fractional Laplacians with Dirichlet Boundary Conditions
	Abstract
	1 Introduction
	2 Statement of Results
	2.1 The Model
	2.2 Hydrodynamic Equations
	2.3 Hydrodynamic Equations
	2.4 Statement of Results

	3 Proof of Theorem 2.16: Hydrodynamic Limit
	3.1 Heuristics for the Hydrodynamic Equations
	3.1.1 The Case θ<0
	3.1.2 The Case θ=0

	3.2 Tightness
	3.3 Energy Estimate
	3.3.1 Estimates on the Dirichlet Form
	3.3.2 Proof of Theorem 3.2

	3.4 Characterization of Limit Points

	4 Proof of Theorem 2.13
	4.1 Proof of Item (i) of Theorem 2.13.
	4.2 Proof of Item (ii) of Theorem 2.13

	5 Proof of Theorem 2.15
	6 Uniqueness of Weak Solutions
	6.1 Proof of Lemma 2.15
	6.2 Proof of Lemma 2.11

	Acknowledgements.
	References




