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a b s t r a c t

Though an overlap of Clostridium difficile PCR ribotypes (RT) in humans and animals has been noted
-particularly in piglets-information regarding C. difficile isolates from swine is scarce in Latin America. A
characterization of 10 C. difficile isolates obtained from this origin in Costa Rica revealed the presence of
the RT078 (n¼ 4) and RT014/5-FLI01 (n¼ 6) ribotypes. Unlike two previous reports from the region, all
isolates were multidrug resistant (MDR). According to a minimum spanning tree (MST) analysis, our
RT078 isolates formed a clonal complex with some German RT078 isolates and the already noted overlap
of RT078 strains in humans and animals. This unanticipated high level of genetic relatedness confirms
the transcontinental spread and geographically unlimited clustering of RT078.

© 2018 Elsevier Ltd. All rights reserved.
Clostridium difficile is a strictly anaerobic, spore forming, Gram-
positive enteropathogen of relevance to human health high
importance in human medicine, with crescent worldwide reports
of severe diseases and antimicrobial resistance [1,2]. In veterinary
medicine, C. difficile has been isolated fromdifferent animal species,
including production animals such as pigs and bovines [3], and its
importance as reservoir and source of infection is still being
studied.

Piglets are often colonized in a sub-clinical form with C. difficile
due to an apparent physiological predisposition [4,5], However,
some individuals develop neonatal diarrhea, weight loss and even
severe pathologic lesions [6,7].

Human and animal C. difficile isolates from the 078 and 014 PCR
ribotypes are highly similar at the genomic level [8,9] and harbor
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identical accessory genomes and antimicrobial resistance genes
[10]. Therefore, is likely that some strains of this pathogen are
zoonotic, representing a risk factor for humans [1] that is enhanced
by the rather common detection of multidrug resistant (MDR)
strains among production and domestic animals [11e14].

The epidemiology and antimicrobial resistance (AMR) of veter-
inary C. difficile from Latin America is largely unknown, except for
Brazil, where RT078 and RT014/20 strains of unknown antibiotic
susceptibility were isolated from foals and piglets, respectively [15].
To expand this knowledge, we characterized ten C. difficile isolates
obtained from piglets in two private farms using genetic profiling,
MLVA and antimicrobial susceptibility testing. To our knowledge,
this study is the first porcine C. difficile report in the region and the
first report of MDR RT078 in piglets from Latin America.

We obtained rectal swabs from all available piglets in two pri-
vate reproductive production facilities located in San Jose, Costa
Rica in February 2017. Samples of about two grams of fecal content
were inoculated and transported in Fastidious Anaerobe Broth
(FAB; Lab M) for less than 12 h until processing. A total of 40
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Fig. 1. Genotypic characteristics of Costa Rican C. difficile isolates of porcine origin. Macrorestriction patterns were obtained by SmaI genomic digestion. Clustering was performed
using the Dice coefficient and UPGMA algorithm in BioNumerics 7.6 (Applied Maths). Twenty-eight SmaI macrorestriction patterns of Costa Rican C. difficile from humans (n¼ 18)
and swine (n¼ 10) were compared. (1) The banding pattern of porcine RT078/NAP7 isolates was identical to that of a human isolate of the same genotype found in Costa Rica (black
arrow). (2) The SmaI macrorestriction pattern 1148 of some piglets' isolates did not match any pattern at the National Microbiology Laboratory (NML) database of the Public Health
Agency of Canada.
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samples were collected from 34 non-diarrheic and 6 diarrheic
piglets (2e14 days old). Data regarding farm sizes and husbandry
practices was not available. No antimicrobial usage history was
reported for the sampled piglets; however, frequent and extensive
uncontrolled use of quinolones and cephalosporins is a common
practice in Central American husbandry. Sampling and animal
handling were carried out in strict accordance with national
legislation and the Animal Welfare and Bioethics Committee
authorization FCSA-CBAB-EMV-ACUE-005-2016. Owners and vet-
erinarians were informed about the purposes of the study.

C. difficilewas recovered from the rectal swabs using a published
protocol [16]. Briefly, samples were treated with ethanol shock and
then plated onto Cefoxitin-Cycloserine Fructose Agar plates (CCFA;
Oxoid) which were incubated under anaerobic conditions. Colonies
with classic morphology were further analyzed. This preliminary
identificationwas confirmed using a PCR targeting tpi and cdd3 and
toxin gene fragments were also detected by PCR as previously
described [17,18].

For Pulsed field gel electrophoresis (PFGE) typing we followed a
published protocol [17]. Isolates were assigned with a SmaI mac-
rorestriction pattern and then compared to patterns deposited at
the National Microbiology Laboratory (NML) of the Public Health
Agency of Canada, database using BioNumerics (Applied Maths) for
a NAP assignment. A capillary gel electrophoresis PCR Ribotyping
scheme was performed and a seven-loci MLVA protocol was done,
supposing interlaboratory comparability and following the labo-
ratory conditions described by Schneeberg et al. [18]. For PCR
ribotyping, the resulting peak patterns were analyzed and sub-
mitted to the Webribo database (http://webribo.ages.at) for ribo-
type assignment. Incomplete matches were designated by adding
the suffix “/FLI01” to the closest Webribo RT. Minimum spanning
trees (MST) were created for the Costa Rican isolates and these
bacteria were compared to MLVA types previously published and
available for Europe and Asian isolates [18e21] using the Bio-
Numerics software (Applied Maths) with optimized settings [18].
Clonal clusters were defined by a summed tandem-repeats differ-
ences (STRD)< 2. Genetically related clusters were defined by STRD
of >2 and� 10; where, single-, double- and triple-locus variants
(SLV, DLV and TLV, respectively) were considered [22].

Minimum inhibitory concentrations (MICs) for fourteen anti-
microbials from twelve families were determined using Etests
(BioMerieux, France) and Brucella agar plates enriched with
vitamin K [1 mg/L], haemin [5 mg/L] and defibrinated horse blood
[5%], following the manufacturer's instructions. Breakpoints for
ampicillin, amoxicillin þ clavulanate, cefotaxime, meropenem,
tetracycline, clindamycin, chloramphenicol and metronidazole
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were set according to the CLSI; the moxifloxacin breakpoint was
used for quinolones as enrofloxacin is highly used in veterinary
medicine in Central America [23]. For vancomycin, the EUCAST cut-
off value was used (https://mic.eucast.org/Eucast2/). Breakpoints
for amoxicillin, linezolid, and rifampicin were: �8, �4
and� 0.004 mg/ml, respectively [24]. MDR was defined as resis-
tance to at least three classes of antimicrobials, as recommended by
Spigaglia et al. [11]. C. difficile ATCC 700057 was used for quality
control purposes.

Ten toxigenic isolates were recovered from the forty rectal swab
samples analyzed. Four isolates from non-diarrheic piglets were
positive for tcdA, tcdB, and cdtA/B (AþBþCDTþ) and showed a tcdC
39 bp deletion. The remaining six isolates, which were obtained
from diarrheic piglets, were positive only for tcdA and tcdB
(AþBþCDT�).

Two PCR ribotypes were found among these ten isolates: RT078
(n¼ 4) and PR16677/11282/15501 (n¼ 6); this latter ribotype was
designated RT014/5-FLI01 with novel RT patterns. By PFGE, the
RT078 isolates were classified as NAP7 and, in line with the ribo-
typing, the RT014/5/FLI01 isolates represented a new SmaI macro-
restriction pattern (1148) without NAP designation (Fig. 1). Two
from our six RT014/5-FLI01 isolates were assigned novel RT pat-
terns (PR15501 and PR21160) in the Webrib (Fig. S1) database
indicating structural variants. On the contrary, four isolates showed
a RT pattern previously reported in the United Kingdom (PR11282),
suggesting a possible transcontinental dissemination.

MSTanalysis of the Costa Rican porcine MLVA types grouped the
isolates in two clonal complexes with low intra variability. Clonal
complex 1 (n¼ 4) comprises all isolates from the RT078/NAP7 ge-
notype (STRD �1, SLV), including two isolates with identical MLVA
types. Clonal complex 2 (n¼ 6), in turn, embraces all of the RT014/
5-FLI01 isolates (STRD�1, DLV), with five isolates showing identical
MLVA profiles (Fig. S2). European, Asian and Costa Rican MLVA
types (Table S1) were analyzed to determine their genetic relat-
edness. Using MST, the Costa Rican RT078 isolates formed one
Fig. 2. Antimicrobial resistance profiles and minimum inhibitory concentrations (MICs) of C
VA: vancomycin, ENR: enrofloxacin, LEV: levofloxacin, CM: clindamycin, XL: amoxillicin
rifampicin, AC: amoxicillin, LZ: linezolid, CT: cefotaxime.
clonal complex with a human German clinical isolate (STRD �2,
DLV). Moreover, weaker genetically related complexes (STRD �10,
TLV) with German and Asian porcine isolates were also identified.
Overall, variable, but valid, genetic relatedness was found among
isolates, regardless of their source or geographical origin (Fig. 2).

All of the isolates showedMICs above established breakpoints to
at least three classes of antimicrobials. MIC ranges were high for all
resistant isolates, especially for quinolones (>32 mg/ml), clinda-
mycin (RT078: 16e32 mg/ml; RT014/5-FLI01: 6e16 mg/ml mg/ml),
tetracycline (RT078: 24e48 mg/ml; RT014/5-FLI01: 48e64 mg/
ml mg/ml), and cefotaxime (>32 mg/ml). No resistance was found for
the remaining antimicrobials tested (Fig. 3).

Antimicrobials like amoxicillin, cephalosporines and enro-
floxacin are highly and continuously used in husbandry practices
[25e29], therefore it is important to highlight the resistance and
high MICs seen for quinolones and cefotaxime. These two antimi-
crobials have been added by theWorld Health Organization (WHO)
to a list of critically important antimicrobials with highest priority
in humanmedicine andwhose usage in veterinarymedicine should
be reduced or highly controlled [30].

The MDR phenotype detected in our isolates correlates with
previous findings from United States [13] and Australia [8] inwhich
high MIC levels were observed too for non-RT078 ribotype with
mobile genetic elements or mutated genes [31].

Taking into account our findings, veterinary antimicrobial usage
surveillance should be extensively practiced in Costa Rica, as ani-
mals have been pointed as possible reservoirs of AMR [14]. Note-
worthy, our MDR RT078 strains were genetically related with
RT078 strains from Europe and Asia. Surprisingly, one of our
porcine isolates clustered with a human isolate, and the other three
isolates clustered with porcine isolates from Germany and Japan.
Therefore, our MLVA findings corroborate the already noted genetic
relationship of RT078/126 strains of different hosts [18e21].
Furthermore, this result matches the already suggested trans-
continental dissemination of these strains [8,20].
osta Rican C. difficile RT078 and RT014/5-FLI01 isolates from swine. MZ: metronidazole,
-clavulanic, AM: ampicillin, CL: cloranfenicol, MP: meropenem, TC: tetracycline, RI:
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Fig. 3. Minimum spanning tree (MST) of human/porcine C. difficile RT078/126 isolates from Europe (Germany, Belgium, Ireland, Netherlands and United Kingdom), Japan, Taiwan
and Costa Rica. The MST was created in BioNumerics 7.6 (Applied Maths). Circle size is proportional to number of isolates with an identical MLVA type. STRD �2 with single- or
double-locus variants were considered as clonal complexes; STRD >2 and� 10 with double- or triple-locus variants were considered as genetically related complexes. STRD distance
is found between single or grouped isolates. Several clonal complexes and genetically related complexes were identified. (A) Full MST from all isolates, (B) Close-up of Costa Rican
clonal and genetically related complexes.
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Our data, even with a small number of isolates, provides a
practical baseline for future research, where genomic tools and a
larger context should be used for better understanding of C. difficile
epidemiology. The MDR here reported in both genotypes poses a
serious public health concern due the lack of public policies for
antimicrobial usage in veterinary in Cost Rica and the region.
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