Global Magnetohydrodynamic Waves In

Stably Stratified Rotating Layers

Xiomara Marquez Artavia

Submitted in accordance with the requirements for the adegf®octor

of Philosophy

The University of Leeds

Department of Applied Mathematics

April 2017



The candidate confirms that the work submitted is her own hatlappropriate credit
has been given where reference has been made to the worlkeo$ ofthis copy has been
supplied on the understanding that it is copyright matemal that no quotation from the

thesis may be published without proper acknowledgement.

(©2017 The University of Leeds and Xiomara Marquez Artavia

The right of Xiomara Marquez Artavia to be identified as Aartlof this work has been

asserted by her in accordance with the Copyright, Desigd$’atents Act 1988.



Abstract

The 2D shallow water approximation in magnetohydrodynanscsolved, numerically
and analytically, for a perfectly conducting fluid on a ratgtsphere with a basic state
for the toroidal magnetic fieldB, = Bysinf. The results are given in terms of the
parameters = 402R2/gH, anda? = v?/4Q2R2, where() is the rotation rateR, is
the radiusy is the gravity,H, is the height of the layer and, is the Alfvén speed. Five
types of solution have been found: Magneto-inertial gyawiaves (MIG), Kelvin waves,
fast and slow magnetic Rossby waves and a slow anomalous traveédling westward.
A comprehensive numerical study describes the modes i mhde of parameters.

As a — 0, the eigenfunctions are the Associated Legendre polyrieniia — 0. When

e — oo the eigenfunctions describing MIG and Fast magnetic Rogstwes are defined
by the parabolic cylinder functions for waves confined togbaator. The slow magnetic
Rossby waves are not equatorially trapped.

Whena > 0.5 there is a transition for magnetic Rossby waves. The slowfasid
modes coalesce and an unstable mode emerges, but only vereerittuthal wavenumber
m = 1. After this transition point¢ = 0.5) the fast magnetic Rossby waves turn into
subalfvénic waves and tend to be trapped at the poles.

As o — oo, the MIG waves become equatorially trapped Alfvén wavdsesE modes are
always stable. The slow and fast magnetic Rossby wavesdnebtomplex) are polar
trapped with eigenfunctions described by Laguerre polyatsmultiplied by a factor
that gives the confinement.

The antisymmetric configuration for the field, = Bjsinfcos6, produces similar
results to the previous case but the main difference is tiaistow magnetic Rossby
waves are absent. Also, magnetic Rossby waves become lenitabertain values of
« ande, then become real again by interacting with another modesarah, weaving a
net. On the other hand, whenis large, there is a critical layer which absorbs the MIG

waves.
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Chapter 1

Introduction

Wave motion occurs in a great variety of physical phenomengh as the study
earthquakes, propagation of light and acoustics. The medtieal theory of wave motion

is very general, and can be applied in many different physitaations.

There are two important constants for all the waves, the gl and the frequency,
or equivalently the wavelength (Hecht and Zajac, 1974). fféguency is the number
of cycles per unit of time, this quantity is critical to cl&gghe wave. Waves are often
described as fast and slow, and we can base this distinctidheomagnitudes of the
frequency. The relative sign of the frequency and the wawdrar also describes the
direction of propagation and the frequency also affectgytioeip velocity, which is the

speed at which energy is propagated. It remains constant tigewave is reflected or
transmitted in a new media. Also it is related to the periothefwave that is the time

elapsed between two consecutive oscillations, by a sinopieatila.

Knowing how a wave propagates through a medium can give biduaformation about
the conditions in that media. For example, the microscopiecture of a crystalline
material can be deduced by measuring wave properties dgtitdeams passing through

it (Hecht and Zajac, 1974). The measurement of its velodtgdsociated with the
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composition and elastic properties of the medium in whighiagpagates, for example the
velocity of the seismic waves is proportional to the densityhe inner Earth (Fowler,

1990). The reflection of sound waves in sonar devices can dranap of the sea floor
(Kinsler et al., 1999). These are classical examples of ywaysics. Our main concern

is waves in fluids.

The waves in fluid are known as mechanical waves; the pettarb@annot exist without
material media. They are in themselves a vast field of studyheir behaviours and
the physical laws that govern them (Whitham, 2011) but a @eepprehension of them

could help us to study the medium in which they develop.

A detailed study of magnetohydrodynamic (MHD) waves in @ettly conducting fluids is
presented in this thesis: the complete set of solutionsteyktem of equations for a thin
shell of rotating fluid. Maybe the study of MHD waves in stansl lanetary interiors
can give an insight about their composition and dynamicsparing the observations
of waves in the stellar tachoclines or inner Earth with osutes, we can infer if there

are stratified layers or have an estimation of the magnitfitteeanagnetic field.

1.1 Geophysical and Astrophysical Motivations

The effect of the gravitational force on a fluid producesieattchanges in density, so the
density decreases as the height increases (Hines, 197i8)déimsity variation could be
present as a continuous transition or it can lead to the foomaf layers with different

properties like temperature, composition and pressureh $ayers are called stratified

layers.

When the structure of a layer is that lower densities areedtitp and the higher densities
are below, the distribution is said to be stably stratified).(e Cushman-Roisin and

Beckers, 2011). Stable stratification occurs frequentlpature and creates different
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layers, each region having particular properties. For gptanthe Earth’s atmosphere is
considered stably stratified except for a thin layer whicimisontact with the Earth’s
surface, (Nappo, 2013). The stratosphere is a stablyfstthtayer located in heights
15 — 50 km above the surface. In the ocean, the density stratificatdines three layers.
A surface layer, a pycnocline layer, sometimes called teentlocline (for low latitudes)
and a deep layer (Pinet, 2012). The thermocline is a regi@hafp transition between

less dense warm water and deeper denser cold water.

Stratification can be measured by a physical parameterdcale Brunt-Vaisala
frequency or buoyancy frequency (e.g. Melchior, 2013),lattva small element of fluid
oscillates when it is perturbed. There is a relation betwherBrunt-Vaisala frequency
and the adiabatic gradient of temperature. If the temperaadient is subadiabatic, the
layer is stable and there is a Brunt-Vaisala frequenicthd layer is superadiabatic, it is

not stably stratified and convection occurs.

Additionally, the rotation of the system can lead to othegrety of waves (e.g. Lighthill,
2001). In addition to gravity waves, rotation leads to Kelwaves and Rossby waves,
which are related to significant geophysical and astrogly$henomena. It is also
possible for magnetic field to be important in generating tyges of waves, for example
in the solar interior or the liquid iron core of the Earth. Wien expect to find Alfvén

waves, which are waves which owe their existence to the poesef the magnetic field.

In atmospheric dynamics, meridional flow fluctuations asmamted with mixed Rossby
gravity waves (Yanai et al., 1968) and other zonal fluctuetiare associated with
a Kelvin mode in the equatorial stratosphere (Wallace andsKg, 1968, Holton

and Lindzen, 1968). In addition, these mixed Rossby grawityes are a potential
explanation for the Quasi-Biennal Oscillation, in whichetlonal wind alternates
direction between eastward and westward propagation, avigieriod of~ 22 — 28

months, in the equatorial region. Also, the existence ofdoual Rossby waves has

been inferred from the study of the westward propagatingltrye pairs” (Kiladis et al.,
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2009).

There are many representative cases of the influence of thages in the weather
and also climate. Gravity waves in the upper atmosphereraimportant part of the
dynamics of the system. Mountain waves produced by the fpation of the horizontal

wind flow have been recognized as gravity waves (Hines, 1972)

In addition to these atmospheric and other oceanic apjitatwaves play an important
role in astrophysical and geophysical systems. Our pdatidaterest extends to the
stably stratified layer in the Earth at the Core Mantle Boupnd@MB) and the thin layer

in the Sun which is called the solar tachocline.

Helioseismic results suggests that there is a thin layeraoisition around the radiative
zone and the convection region. This layer has a sharp chiartge rotation rate; the
outer part rotates differentially with the poles rotatingvdy and the equator faster, see
figure 1.1. The radiative interior has a solid-body rotatiate (Miesch, 2005). According
to Charbonneau et al. (1999), the location of the tachocding93 + 0.003 R near the
equator and).717 + 0.003R., at a latitude of60° (Charbonneau et al., 1999). Their
estimations for the width ar@039 + 0.013 R, at the equator an@.042 + 0.013R, at a
latitude of60°, whereR, is the Sun’s radius. These estimates are not very certaithend
tachocline might be thinner than this. It has been suggekstedhe movement of plasma

acting in this layer contributes to generating the solarmedg field.

The solar magnetic field has a complex behaviour but showe gatterns. The sunspot
cycle is the most common pattern of solar activity, which eyas at a certain band of
latitudes and moves to the equator, then the polarity of thlead field reverses and the
patterns emerge again to complete a cycleiyears. It is known that the solar activity
is maximum when there is a greater number of sunspots andnmmiwhen there is less.
The solar activity also presents other cycles such as thissblerg cycles o60 ~ 150

years (Ma, 2009) or for instance, Rieger type periodicibisundreds of years.
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On the largest scales, during solar minimum, the axisymomeimponent of the poloidal

field is mainly dipolar with a magnitude of0G for the solar photosphere. As the
cycle continues the field shows multipolar components amdies more complicated
(Miesch, 2005).

Moving on now to consider the magnetic field in the tachoglimeny researchers
assume that the amplitude of the toroidal component is lartierespect to the poloidal
component (Tobias, 2005). According to many authors it @¢dad a purely toroidal
magnetic field (Gilman, 2000, Zagarashvili et al., 2007)sjpite the fact that part of the

500 T T T T

Q/2n (nHz)

Radiative
Zone

Core

Figure 1.1: At the left, inner structure of the Sun, the tachocline is tilamsition region
separating the radiative zone and the convective regiorurt€sy: Marshall Space Flight
Centre/NASA. http://solarscience.msfc.nasa.gov. Atitjet, rotation rate varying with the
solar radius, for different latitudes, the tachocline isaied about- 0.7R,. National Solar

Observatory.http://gong.nso.edu/gallery/disk2k1t@ftasource/ torsional/torsional.html.

tachocline experiences differential rotation (Schou gt1#898), see figure 1.1, for our
purpose of studying waves in general, we consider that ghex lsas constant solid body

rotation, with a rotation rate of 27 days (Hughes et al., 2007).

It seems possible that if a spectrum of oscillations aristhéntachocline, these waves
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can describe some solar activity (Spiegel, 1994). Obsensfrom satellites of Coronal
Bright Points for tracking magnetic activity of the Sun hawewealed certain wave
patterns with westward phase speed3.2$ +2.25m /s and2.65 £ 1.60m/s in the north
and south hemispheres. These waves have eastward grows s§@d.4 + 15.3m/s

in the southern hemisphere a2@l8 + 20.8m/s in the northern hemisphere, (McIntosh
et al., 2017). It is believed that this is a kind of magneticftry wave arising from the

rotation and the toroidal field of the tachocline, see figug 1

AIA/EUVI Brightpoint Density At 72 Degrees Longitude

Latitude [Degrees)

2011 2012 2013

Figure 1.2: lllustration of solar activity: average of coronal brigttipts density at given

longitude of72° (From Mcintosh et al. (2017)).

Other solar type stars will have a tachocline as well, andliofahem rotation rate and
magnetic strength will differ from that in the Sun (Olah k£t 2009, Hughes et al., 2007).
The study of solar type stars could clarify the relationdiepiveen the wave generation
in the tachocline and the periodicities of the magnetic fafldhe sun. It is therefore
of interest to consider a wide range of possible parameterthé rotation rate and the

magnetic field, not just specific values.

Let us now consider instability. The interest for investigg instability in MHD
problems has grown in recent years, due to the discoveryuwfttass relations between

unstable modes and certain natural phenomena, for inskamses of gamma and x-rays
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in the sun or neutron stars (Gilman and Dikpati, 2002). Soutkas also suggest that
reversals of the Earth’s magnetic field could be activateanlagnetic instabilities. It
is also possible that gravitational instability in giantlewular clouds could initiate star

formation e.g. Rudiger and Hollerbach (2006).

Also, there is another motivation for this thesis: to studg stratified layer at the top
of the outer core of the Earth. The Earth’s core has a liqutdreor and solid interior.

The outer core has a smaller density than the inner core arainposed mainly of iron
and a few percent of light elements, but the inner core is asm®g mostly of pure iron
(Karato, 2003).

The geomagnetic field is generated in the outer core by a dye#fect (e.g. Jones 2011).
The structure of the field is predominantly dipolar. Howeviehas been suggested that
the magnitude of the toroidal field in the core may be as much asl0~-27, which

is considered stronger than the poloidal component of ntageit x 10~*7" (Melchior,
2013). The fact that the toroidal field may be stronger tharpthioidal field has relevance
for this research.

The magnetic field of the Earth undergoes variations. Soraagds are due to the
interactions between the solar wind and the magnetospldreh are fast and last
seconds. On the other hand, the time elapsed between paleviersals, which are
inversions of the polarity of the field, can take millions afays to occur. Also, there
is the secular variation, which occurs over periods of tinoenf years to centuries, like
westward drift, geomagnetic jerks, the growth of the Soutlaic anomaly, and the
anticyclonic motions of field features in the North pole (Binet al., 2010). In figure
1.3, the radial component of the core’s field is shown, whetenise spots are located
near the equator and propagate westward (Finlay et al.,)2010

Braginsky (1998) suggested the existence of a stable fethtayer at the top of
the core, see figure 1.4, where many kinds of waves could, aisgogous to those

which propagate in the ocean of the Earth. Then, the slowlasens produced by
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Magnetic
flux (uT)

flux (uT)

Figure 1.3: Radial component of the core magnetic field. Note how flux spotthe

positions A, B, C, D and E are slightly moved toward the weshwespect to the 1980's
plot. Reproduced from Jackson (2003).

an equilibrium between magnetic, Archimedean and Corilises, called magnetic
Rossby waves are considered to be related to short time-gemmagnetic secular

variation, length of day variation and oscillation of thdgposition.

Other theoretical models describing the movement of fluidbieé Earth’s core establish
that waves can be responsible for short term secular vamiati the geomagnetic field
(Finlay et al., 2010, Hori et al., 2015). Bergman (1993) jmsgd a thin shell model,
and solved the Laplace tidal equations modified by the Lartarte for a dipolar field,

using thes-plane approximation. He suggested that solutions witly joeriods such as

magnetic Rossby waves, are a plausible cause for seculatioar

Recently, seismic evidence has shown (Helffrich and Kanesh2010), a reduction in
the outer-core wave speedsiot% relative to the expected speed at 60 km into the outer
core, which slowly recovers the expected value at a deptl®@@ikd. These differences

reflect the presence of a layer of 300 km in thickness at thetdpe core: a stratified
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Mantle

CMB

4

Stably stratified layer

1
1210 km 3480 km 6370 km

Figure 1.4: Inner structure of the Earth. It has been suggested tha tharstably stratified

layer at the top of the core.

layer.

1.2 Modelling Approaches

The aim of this thesis is the study of MHD waves in stably dteat layers, describing
the solutions with generality for any physical system. Tve@can analyse more deeply
some special cases that could represent the tachocline &tth or the stably stratified

layer at the top of the Earth’s core.

Our analysis starts from the shallow water approximatidosequations, for a fluid with
constant density and(2, as the rotation rate of this system where the height of thd flui
is much less than the horizontal distances. As a result sftkt@ vertical component of
the velocity will be less than the horizontal componentsl, #tre@ same will occur for the
vertical component of the magnetic field. In this case radigblacements do not appear
explicitly in the governing equations. Despite the simipfiof the shallow water model

it can be applied to many cases in oceanic and atmospheids flwihere it is capable
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of describing important phenomena (Pedlosky, 2013). Letwliggins (1968), in the
context of geophysical fluids, has solved the problem forséteof equations known as

“Laplace Tidal equations”.

We follow the MHD shallow water approximation proposed byn@in (2000). He
considered thin layers of conducting fluid immersed in aitabmagnetic field, and
used this model to research the dynamics of the solar taokogbilman, 2000). Since
then the MHD shallow water model has been applied to the stil@®ossby and gravity

waves in the tachocline of the Sun (Zagarashvili et al., 22009).

Several studies have provided important information on MidBallow water” waves.
Schecter et al. (2001) have found two kinds of waves: Alfwaves and “magneto-
gravity” modes in the context the solar tachocline, this MidBallow water model
is developed in Cartesian coordinates for a rotating systdfim a constant toroidal
magnetic fieldB,. Other MHD shallow water approximations have taken intcoaot

multiple layers (Hunter, 2015), yielding solitary and ataliwaves.

Our results will be expressed in terms of the normalizedfeagy of wavesA = w /2,
and some dimensionless parameters, wkgres the rotation rate of the system. These
include the magnetic parametey defined byn? = B2 /pu4Q2R2, and the parameter
e = 4Q2R2/gH,, for definition of symbols see table 1.1. The values of thepaters
are uncertain, but the order of magnitude can be calculatestdbly stratified layers of

the Earth and Sun, using the physical constants in table 1.1.

The physical constants can vary with the position. In thars@lchocline the stratification
is high in the radiative zone and lower in the overshoot nregibhis must be common
in stars similar to the sun, with a stably stratified layemsstn the convection zone
and rigid body rotating region. This stably stratified laplianges from adiabatic to
subadiabatic gradient of temperature. In the Earth’s cam@@oth transition is expected
from convection to stable stratification, but this is verffidult to determine. For this

reason, we give a complete study of the solutions in a vegeleange for the parameters
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« ande. Therefore, these results must be interpreted with cawtizen they are applied
to astrophysical context, because of the uncertainty op#tirameters and the simplicity

of the model.

For the estimation of the parameters, we choose a constaritagional acceleration and
the highest published values for the magnetic field. Theagsati density and gravity for
the Earth’s stratified layer come from PREM model (Dziewamsid Anderson, 1981).
Although, in the solar tachocline the value of the gravityadid for the radiative part
of the tachocline and changes abruptly in the overshoot plidk et al. (2016) has
suggested that the factQfg H, could be calculated through the Brunt-Vaisala freqyenc
as the fastest possible gravity waVe?, /7, whereH is the depth of the layer. Taking
N = 8 x 107%s7! at0.7R., the value of\/gH, is 16000m/s with a height equal to
H, = 1 x 107m. Then the parameter for the solar tachocline i6.03, as showed
in table 1.1. However, it is important to bear in mind that ttadue of the buoyancy
frequency varies across the tachocline and reduces to zéne base of the convection
zone, (Hughes et al., 2007).

In the same way the velocity can be calculated for the sedtifayer of the Earth
VgHy = 305m/s , taking H; = 3 x 10°m and N = 0.51mHz from Helffrich and
Kaneshima (2010), then= 2.7.

In table 1.1 the values afin blue color correspond to the calculation using the values
of g and H,, written in this table.

Based on this model and these parameters, we try to find orelatween our solutions
for the MHD shallow water system to some geophysical an@pbyrsical observations.
In the next chapter, we explain the mathematical detailshefNIHD shallow water

model.

Another significant aspect of the MHD waves is that instapitiould be present. In
stable equilibrium, a physical system tends to remain ctosine original state after

a perturbation. In unstable equilibrium, the system hasffardnt response to small
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Table 1.1: Estimated values of fundamental parameters for the EadiSan. The numbers
for the tachocline with* have been taken from Tobias (200%) & corresponds to Hughes

et al. (2007).

Symbol Earth Sun
Density p 9.9 x 103kg/m? 210kg/m>**
Rotation rate Qo 7.29%x107°rad/s 2.7 x 10"*rad/s
External radius of the layer R, 3.48 x 10%m 5 x 108m
Magnetic field By 2 x 10727 107
Height of the layer H, 3 x 10°m 1 x 10™*m
Gravitational acceleration g 10.68m/s? 540m / s%xx
Effective “gH," gH, 9.4 x 103m? /s> 4.7 x 10"m?/s*
« 4 %107 0.2
Parameters
€ 0.08-2.7 0.03-0.04

disturbances, moving away from the basic state.

In the present study, the variables of the system, velsciied magnetic field are
perturbed about a basic state by a small amount and the gogeeguations are
linearised. Then, we expect that the solutions are prapuatito the factoe=**, as

will be shown later. If the imaginary part of the frequengy> 0 is greater than zero,

the exponential factor tends to grow in amplitude, and thderis unstable.

Next, we study the solutions in the space of parameters. ¥ample, we have three
parameters: wave numberj, rotation rate ) and magnetic field amplitude, and by
varying these we try to obtain a critical value which setsitistability (Chandrasekhar,
2013).

Numerous studies have attempted to describe instabilitiddalkus (1967) found

instabilities in the problem of a rotating sphere of condctiuid, in a toroidal magnetic
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field By sin 6 for the azimuthal wave number = 1. He estimated the minimum value

of the magnetic parameter equivalentto> 0.5 for instability.

A significant analysis and discussion on the subject waspted by Tayler (1973). He
obtained conditions for the stability of a non rotating stantaining a toroidal magnetic
field B,(r, z) and demonstrated that a large class of configurations atahlesind the

instability depends on the topology of the field rather thaits strength. The effect of
the rotation has been considered in a later publications(Bitd Tayler, 1985), where

instabilities exist forn = 1 and other conditions of the problem, see also Spruit (1999).

Gilman and Fox (1997) studied the instability of latitudimtfferential rotation and
toroidal magnetic field in the forn®, sin #. They found instabilities only for the wave
numberm = 1, for almost any magnitude of the toroidal field, althoughhis tvork they

suggested that there is no instability when differentightion is absent.

In a later study, Gilman and Dikpati (2002) studied MHD StwallWater systems with
toroidal fields and differential rotation for the solar tactine. They found mainly that
the modem = 1 is the preference for instabilities; nevertheless fior= 2 in the
presence of weak fields, unstable modes exist. When the madiedd is strong and
m = 1 the growth rates are independent of the “gravity paraméteg’call ite). In their
research, they showed that the existence of complex modgagesransport of angular
momentum. For the two dimensional problem of an electyoadnducting and viscous
fluid in a spherical shell, Sharif and Jones (2005) proposecrzimuthal magnetic field
By sin 6 cos 0, under differential rotation and taking into account dsifan. They found
unstable modes fan = 1 andm = 2, and the modes can also be unstable under solid
body rotation. In addition, they found that there is a valtiéhe amplitude of the field

(o = 0.5) where the curves for the growth rates start having a diffibehaviour.

A criterion for instabilities was described by Cally (2008)a 3D Boussinesq thin layer
approximation for toroidal fields in the Sun. It establislhestable waves occur if the

Alfvén frequency exceeds the rotational frequency andmsgitric growing modes are
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confined at the poles fom = 1. He also mentioned that including diffusion in the

problem does not suppress the instability.

In a later work, Cally et al. (2008), they consider the ingigbfor the axisymmetric
mode (n = 0) with a 3D Boussinesq model for spherical shell for bandedmetc
profiles and differential rotation. Instabilities are faufor a high radial wavenumber

and also the modes are confined at the poles.

Our starting point in chapter 2 is the description of the $etquations for the thin layer
model for a toroidal field with equatorial symmet&; sin 6, in spherical geometry. We
also present an eigenvalue numerical method for solvingyeem of equations. As an
alternative, ordinary differential equation formulatsosre also developed in this chapter.
Chapter 3 is a summary of the hydrodynamic case, studiedousy by other authors
(Longuet-Higgins, 1968, Matsuno, 1966). In chapter 4, wwesthe MHD Shallow
water model numerically. In chapter 5, the asymptotic thdor the different waves is
explained in the limiting cases of large and small pararseteome unstable modes were
found, and, these solutions are described extensivelyapteh 6. Chapter 7 is related
to solutions and considerations for the problem of the gntisetric field By cos 6 sin 6.

We discuss the main consequences of this work in chapter 8.
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Chapter 2

System of Equations for the Shallow

Water Approximation in MHD

2.1 Magnetohydrodynamic “Shallow Water”

Approximation

The shallow water approximation is a model extensively igogh the study of fluids in
the atmosphere and the ocean. Although, the model is stfaiglard, it is capable of
describing relevant phenomena in geophysics (Pedloskyg)20The classical shallow
water approximation of geophysical fluid dynamics desaibethin layer of fluid in
hydrostatic balance, with a rigid surface in the lower bamdand a free surface in

the upper boundary.

In 2000, Gilman introduced a magnetohydrodynamic set oatgus for a shallow water
system of conductive fluid immersed in a strong toroidal nedigrfield (Gilman, 2000).
Since then, the applications of the shallow water model &en extended to the inner

planets and stars (Zagarashvili et al., 2010a,b).

In this section we will make a formal derivation of the magrstdrodynamic shallow
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water equations, and establish the parameters and vadiditys model.

2.2 Governing Equations

We consider a thin layer of fluid, with constant dengitgnd heightY = H, + h, where
H, is the average height aridx, y, t) is the deviation independent of(vertical). The
vertical length scald? is much less than the horizontal length scdle,so it can be
expressed by

H/L < 1.

The equation of continuity for an incompressible fluid résin

ou Ov Ow
V U= O = —_— —_— _— = O
o= ar oy o
Using the lengths scales of the thin layer, it follows tha tertical velocity is smaller
than the horizontal components

w <L U, .

In the same way, the magnetic field’s components satisfyghatenV - B = 0, stating

that the vertical component of the field is small compared #ie horizontal components
b, < by, by.

The solar magnetic field in the tachocline can be consideraithlyntoroidal (Tobias,
2005). Despite the Earth’s magnetic field having a dipolangonent in the core, where
the stably stratified layer is, the toroidal field componentmuch stronger (Melchior,
2013).

In addition, the magnetic field and the velocity are also paelent ot (Gilman, 2000).
Also if the fluid is perfectly conducting, we can neglect thiugion terms.

We suppose that the fluid above the layer has negligible tyegisi ~ 0) compared to

our layer density, as illustrated in figure 2.1 and at thedvotthere is a rigid surface. If
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we would like to consider a layer of fluid with densijty on top of our stratified layer,
similar to the layers in the Earth’s ocean, the governingaiiqus remain the same but
this active layer could be taking into account through thecept of “reduced gravity”
(Vallis, 2006).

Figure 2.1: Shallow water system: the velocity field is shownijs the vertical velocityu
andv are the horizontal components. The height of the layéf iss Hy + h, whereH is

the average height while its deviation/is

2.2.1 Induction Equation

The induction equation can be derived using Maxwell's eigmatnd Ohm’s law
(Thompson, 2006). Without considering diffusion and netjtg electrostatic forces,
the equation takes the form

0B

=7 =V x (#x B), (2.1)

whereB = (B,, B,, B.) is the magnetic field. Using the vectorial identiyx (@ x b) =
(b-V)a—b(V-@)— (@ V)b+a(V-b), we can change the right hand side of the equation

— =(B-V)i— B(V %) — (#-V)B+#V - B). (2.2)
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Using the Gauss Law for magnetisi¥i,- B = 0 (Reitz et al., 2008), and the condition

for incompressible fluid/ - ¥ = 0, we have
“— = (B-V)i—(7-V)B. (2.3)

The components of the velocity and the magnetic field aregeddent ot thus the terms
dv/dz anddB/d= are zero, the induction equation for the horizontal comptmef the

velocity and the magnetic field, can be written as
——+ (Vu - Vy)By = (EH : VH)VH (2.4)

whereV; andB; are the horizontal components of the velocity and the fiedgeetively,

likewise,V g is the horizontal gradient.

2.2.2 Momentum Equation

Newton’s second law of motion for a conductive fluid can beaten as

ou
ot

—

=4 1 > 1 —
+(0-V)T4+20x7=—-=-VP - gk+—(V x B) x B. (2.5)
P PHo

The term2() x 7 refers to the Coriolis force, introduced to take into acddha effect of
the system'’s rotation. The first term in the right hand sidthefequation is the pressure
gradient, the second term is the gravity force and the last is the Lorentz force,
diffusion is not considered here. Using vectorial ideasitiwe can rewrite the Lorentz

force term, and the equation takes the form

i o 1 B2 1 = .
@Jr(U-V)UJrQQxU:——VP—V( )+—(B-V)B—gk;. (2.6)
ot p 240p

Rearranging the last equation, we have:

- P  B? 1 -
+(T-V)T+20xT=-V (—+ )+—(B~V)B—gk. (2.7)
p o 20p Plo

ov
ot
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We assume that the density is constant, the fluid is incomajimesAnalysing the vertical
component of the vectorial equation (2.7), we consider #lecity and the magnetic

field vertical components negligible. Then, this simplifioa leads to magnetostrophic

balance
o (P B? )
O=—%|—+ —g. 2.8
o (T45) - (2.9)
Solving this differential equation by integration, theuk:$s
B2
P+ — = —pgz+ F, (2.9)
240

where P, is a constant. Gilman (2000) establishes thtte gas pressure is reduced
by the amount of the magnetic pressure them&ferring to the upper boundary, when

z = H, the total pressure iB + % =0, hence
Py = pgH.

Substituting this result into (2.9), we obtain
B2
P+ — =pg(H — 2). (2.10)
240

Hence, the horizontal pressure gradient can be written as

B2
240

Taking the horizontal components of the momentum equagof) (the formula for the

shallow water approximation in magnetohydrodynamics kgl

Wy - -2 [ 5
a—f + (Vi - V)V +20 x Vi = W(BH Vu)By —gVuH, (2.12)
0

whereVy; and By refer to the horizontal components of the velocity and thgme#ic
field, respectively.
In case we want to consider that on top of our stratified lalgere is another layer of

densityp, not negligible then the boundary conditionzat= H must be different. Then



20 Chapter 2. System of Equations for the Shallow Water Appnation in MHD

the hydrostatic and magnetic pressure equals the hydmptassure of the fluid of the

upper layer, as follows
2

B
P+2— :pog(Hl—H), at z=H, (213)
Ho

where H; is the height of the upper layer and is a constant. Therefaébrizontal

gradient of pressure is represented by
2

VH(P + QB—,uo> = pg,VHH.

with ¢' as the reduced gravity defined by

g =P—"P (2.14)

We will take into account this effect through the calculatad the parameter.

2.2.3 Equation of Conservation of Mass

The mass contained in a fluid column of heightand cross sectiod is [, pH dA. If
there is a net flux of fluid across the column, with an increagéé mass in the region,

the height of the column increases (Vallis, 2006).

/ S
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Figure 2.2: Mass flux entering in a column of fluid of cross-sectional ateand lateral area

—

S.
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The mass flux entering the column is related to the derivaifvihe mass in a given

volumeV
E,, = —/pﬁ- ds, (2.15)

whereS is the lateral area of the column. The element of are#ssil wheren is a unit
vector perpendicular to the boundary pointing outwards, fggire 2.2 andi/ is a line

element around the column. Then, the equation (2.15) begome
F,, = —/pHU~del.
Using the divergence theorem, the last formula simplifies to
E, = —/Av - (pHT) dA, (2.16)

where the integral is over the cross-sectional area of themgoof fluid. The increase in

the height of the water column is given by

d d

S
at J,.* dt J

pH dA = / pﬁ—H dA. (2.17)
A

F,
ot

Because of the conservation of mass, the equations (2.@62akv) are equivalent, hence

iy —/ V- (pHT) dA. (2.18)
A Ot A

Rearranging the equation for constant density, we obtain

M G (He)dA =0, (2.19)
L, Ot

For any arbitrary surface, the expression is

=+ Vi (HVy) =0, (2.20)

As stated before, there is no dependence,dhen the differential operator simplifies to

the horizontal derivatives/ 5.
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2.2.4 Divergence Free Condition

The following is a brief description of one of the Maxwellguations, the divergence free

condition or Gauss’s law for magnetism which establishesralition for the magnetic

field
?{ B-dS =0,
A
which states that the magnetic flux in a closed surface is ZEhe surface is depicted
in the figure 2.2. Then, the area elemeéftis Hn di (lateral area)n is a unitary vector
perpendicular to this surface adtis a line element circumscribing the colunais,shown

in the figure 2.2. As a result the integral around a curvis
/ HB-fdl =0. (2.21)
C
Using the divergence theorem
/Hé-ﬁdl — / V. (HB)dA=0, (2.22)
C A
becausd? and B, does not depend on we have
/ Vy - (HBy)dA =0. (2.23)
A
Therefore, the divergence free condition for this model is

V- (HBy) =0, (2.24)

2.3 The Set of Equations and the Basic State

In summary, the equations for shallow water MHD are

OB . . . .
8—tH + (VH : vH)BH = (BH . VH)VH, (2.25&)
aVH - — — 1 — —
— 4+ (Vu - Vu)Vg+2QxVy = —(By - Vyg)By — gV H, (2.25hb)

ot Hop
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%—i] + V- (HVy) =0, (2.25¢)

Vy - (HBy) = 0. (2.25d)

The set of equations will be developed in the following paigespherical coordinates,
whered is the colatitude and is the longitude. There is no radial dependence, so the
system i D.
The basic state can follow different configurations: théudinal dependence of the
magnetic field, a height dependent on the latitude, varieffective gravity (Dikpati
et al., 2003, Dikpati and Gilman, 2001), mean zonal flows aresses on the convection
regions.
Previous studies have analysed some basic states for waessgabilities in the shallow
water model or the continuously stratified layer. Taylerq@,91980) and Pitts and Tayler
(1985) have established the conditions for stability foroatmuously stratified layer
where the gravity and the pressure field depend on the positio
Rashid et al. (2008) have considered as the basic state,ahfimm dependent of the
vertical coordinate that may be maintained by a latitudieaiperature gradient and a
radial shear or thermal wind. The condition of magnetohgtitic balance could be
mantained by imposing a zonal jet in the stably stratifie@tgiRempel et al., 2000).
There are several options for choosing the basic state ilvitH® shallow water

approximation, Zagarashvili et al. (2007) consider an utoplked toroidal magnetic field
é(z, = B() sin 9é¢,

and its perturbation
B’ = byég + by,

whereB, is a constant.
We note that a toroidal field can be linked to a current, whielswppose closes outside

of the thin layer that is being modelled, but we do not dis¢hesurrents here.
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The velocity perturbation corresponds to
VH = UpCy + UpCyp.

The perturbation of the layer thickness is
H = Hy+ h(0,¢,t),

and the basic statd, is constant, for the height field can be constant the magstéss
term (By - V)By in the momentum equation (2.25b) has to balance with an readter
stress. Then thé-component of (2.25b) requires the following basic statarze:

g dH, cot0B}

0= %0 F
Ry do pioRo M

whereF, is an external stress. So constahtimplies non-zerd.
Moreover, this basic state leads us to the possibility offiganalytic solutions in certain

limits.

2.4 Linearised Equations in Spherical Coordinates

We substitute the basic state of the height, the magnetit dietl the velocity into the
equations (2.25a)-(2.25d), and linearise the system.ddagy all the terms considered

small, the equations are therefore:

Oug g Oh By Obg By cosd
— — 2Qqgcos b - - by = 2.26
ot 0 €08 Gtig + Ry 00 popRosin® 0¢ i LiopRo sin @ ? 0.« 3)
0u¢ qg oh bg BB¢ B¢ 0b¢ B¢ cos
—= +2Qq cos — = — — - by =0
ot o cosbuet Rosin0d¢ popRo 90 jopRosin® d¢  popRo sinf ©
(2.26b)
8]1 H(] 8 . HO 5’u¢
- - 0 —f = 2.2
ot + Rysin 6 89(Sm o) + Rysinf 0¢ 0 (2.26¢)
Oy _Bo Ouy _, (2.26d)

Ot Rosinf 0¢
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8b¢ 1 8 o B¢ 0 . 0U¢
T R 89< = Rosind { (ugsin ) + } (2.26e)

00 0¢
We propose solutions of the formi™¢~i! ¢ is the time,w is the frequency of the
oscillation andn is the azimuthal wave number. It leads to a set of five couplidohary

differential equations witl# as the independent variable:

A A g . oh ’LmBQ ~ 2B0
—iwtig — 20 cos Oy + —=— sin f— — ——-
Wl 0 COS Uy + i Sin 90~ mopR, o + opks

imBO ~ 2B

cos 95¢ =0, (2.27a)

N N . g 0 2
—iwly + 29 cos Oty + im—=h — by — cos by = 0, 2.27b
’ " ’ Ry mopRo ° popR, ’ ( )
H l H
—iwsin® Oh + R—s sin 9% + imﬁj% =0, (2.27¢)
. By
1wby + zmﬁu@ =0, (2.27d)
0
- By .
iwby + im—1g4 = 0, (2.27¢e)
Ry

wheredy , iy, h, by andl3¢ are the corresponding amplitudes of these new variables:
ﬂg = sin GUQ, ﬂ¢ = sin 9u¢,

lA)g = gin ebg and lA)(z) = sin 8b¢

We now change the variabteto ;. = cos # and introduce the differential operatbr =
—sin00/00 = (1 — u*)0/0ou.
We also define the Alfvén velocity, throughv? = B3/ pop-
Our results will be given in terms of the dimensionless paians
2 D2 2
€= %, and o’ = ﬁ,
and a dimensionless frequency wWa= w/2¢),. Additionally, the dimensionless variables

are

~

7;119 ~ U¢

T ORy T 204Ry

U (2.28)
gh

n = m, ZA)@ = ’L.Bogg, ZA)¢ = Bol;¢.
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Then, the equations take the form

Nig + piig + D + maby — 202 by, = 0, (2.29a)
My + puitg — mn + ma2by — 20 by = 0, (2.29b)
(1 — p*)n — Dig — miig = 0, (2.29¢)

Abg + miig = 0, (2.29d)

Abg + miig = 0. (2.29e)

Equation (2.25d) for the divergence free condition can ledulsthe linearised form is
Oy

me(1 — p*)n — (1 — p?) on + mby = 0. (2.30)

In order to solve we now expand each of the dependent vasialslea sum of associated
Legendre Polynomials, remembering that each expansiohlmusn > m because the

polynomials are not defined far < m,

ag =) APPT(n), b= Y BIPl(n),

ip= Y CrPMu),  by= Y DrPMu), n=Y_ EIPIu).

Even though these are infinite expansions, for the purpddbe aumerical calculations
expansions will be truncated at = N for all m, where NV is the truncation number
and for our purposed’ is large compared te:. We will make use of two properties of
associated Legendre polynomials

(n+m)
(2n +1)

N (n—m+1)

m

pby =

m
n—

(n+1)(n+m) _nn-—m+1)
(2n+1) ! (2n+1) Y

Substituting the expansions of the dependent variableshetequations (2.29a), (2.29b),

DP™" =

m
n—

(2.29c¢), (2.29d) and (2.29¢), and then using the propeofiese associated Legendre
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Polynomials, we obtain a set of algebraic equations. In eaphation we must set
the coefficient ofP™*(u) to zero, and we then obtain the following equations for the

coefficients in our expansiod\”, B,*, C*, D", E"
AT = ma®B™ — ¢, 0™ +20%¢, D™+ (n— 1), E™

- pn-l—lcrrzn-i-l + 2a2pn+1D;n+1 - (n + 2)pn+1ErTLn+17 (2318.)

AC™ = SE™ —maD™ + g, A",

20°¢, 1By, — 2a2pn+1B;n+1 + Por1An, (2.31b)

m_

Me(l = prn—1 — @uPn+1)E)' — €Dnyobni1 By — €qn1Gn—2E," 5}

=50y — (N4 2)pp1 Ay + (= 1)gn1 Ay, (2.31c)

AB™ = —mA™, (2.31d)
AD™ = —mC'™, (2.31e)

where, ¢, = (n—m+1)/(2n+1) andp, = (n+m)/(2n+1). Because the
associated Legendre polynomials are symmetric about theteqif » — m is even, and
antisymmetric ifn. — m is odd, there are two independent set of equations of diftere
parity. The coefficients,,,, B,., Crni1, Dii1y Fmits Ami2y Bma2y Cotzys Dingsy Ess,
Amiay, Bmaas Coasy Diss, Emos.... are related to each other, while the othéys, 1,
Byiiy Comy Dy By Avaisy Bragsy Cragay Doy Epyoy Apmysy Bogsy Crgeas Dinga,
E,..4.... form another independent set of equations. We solve setcseparately using
a Matlab eigenvalue and eigenvector solver, designed te sbe system of equations
Av = ABv, with a QZ method for the computation of the generalizedraigkies.

The algorithm for the QZ method is based on the theorem thabkshes that there
are unitary matrice§) and Z whereQAZ and QB Z are both upper triangular. The
eigenvalue problem@ AZy = A\QBZy and Av = ABv are unitary equivalent. The
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eigenvalues are the same for both problems and the eigensect related by = Zy/
(Moler and Stewart, 1973).
The method has four steps, briefly described as follows (Kanf 1977):

1. The matrixA is reduced to upper Hessenberg fouyy & 0 for i > j + 1) and B

is reduced to upper triangular forrhy (= 0 for i > j) simultaneously.
2. The matrixA is reduced to a quasi-triangular form but maintainfdriangular.

3. The quasitriangular matriA is reduced to a triangular matrix and the eigenvalues
are extracted, using the fact that the eigenvalues of agwian matrix are the

elements of the diagonal.

4. Determining the eigenvector of the triangular matriced eeturn to the original

system.

The eigenvalues of the original problem are calculatedddig «; and 3;, the diagonal
elements of the triangular matric€3AZ and QBZ with \; = «,;/5;. With this

algorithm is not necessary to invert the matBx.

2.4.1 First System of Equations

The first system of equation is obtained on rearranging thateens for theA,,, B,,,
Crms1y D1, Byt ..., cOefficients. In this set, the solutions forandb, are symmetric
with respect to the equator but the eigenfunctionsﬁ@rf)qb andn are antisymmetric.
These modes are known as sinuous or kink modes since fluidlewllnorthwards at
the equator in some locations and southward in others. Themrduations (2.31) are
rewritten as

AB" = —mA", (2.32a)
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—MAT = moz2B;” — qn1C)q + 20z2qn_1D:’f_1 +(n—1)g,1E"

- pn-i—lclln-;-l + 2a2pn+1D7T+1 - (n + 2)pn+lE7T+1> (2320)
ACYy = B —ma’Dyyy + gAY
- 20[2anan - 2a2pn+2B;n+2 + pn-l,-QA:Ln_i_z, (2.32d)

Me(l = prg1@n — Gu1Png2) B0y — €Dnys3Pnia ) s — €qngn B 1 }
= SC;Ln-i-l - (n + 3)pn+2Azl+2 + (n)QnAga (2326)

wheren =m,m+2,m+4,m—+6,....

2.4.2 Second System of Equations

On the other hand, the second system of equation is obtaiih we rearrange
the equations for the other parity,,+1, Bmi1, Cmy Dpy En.... In this case the
eigenfunctions fori, and by are antisymmetric and,, 5¢ andn are symmetric with
respect to the equator. These modes are called varicoseissiggamodes. Then the

equations (2.31) are rewritten as
AB™ | = —mA™, (2.33a)
ADT = —mC™, (2.33b)
“MYL = ma?BlYL — 4.C) 4 20%¢, D)) + (n)gn By

- pn+2021+2 + 2a2pn+2DZ"b+2 - (n + 3)pn+2E21+27 (2330)

AC™ = SE™—maD™ + g, A",

20°q, 1 B) ) — 207 pp 1 By + P A, (2.33d)
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Me(l = prgn-1 — @uPnt1) B — €ppiobni1 B — €qno1Gn—2E" 5}

=mC)" — (n+2)ppAny + (0 — 1)gp_1 A} (2.33e)

n—1

wheren =m,m+2,m+4,m+6, .....
With regard to the validity of the solutions, we perform at tesensure that only lower
degree eigenfunctions will be chosen. This means that tharestons of the Associated
Legendre Polynomials will not be affected by the truncatmmber /N, because the
coefficients of high degree are smaller than those of lowgrede We measure the ratio
between the sum of the first half of the square of the coeffisiand the second half
S (A7)

Zg:N/2+1 (A2

For a given eigenvalue, if the ratio is large, it means thatsthiution has a lower degree

Ratio =

(2.34)

and it is valid. If the ratio is smalk( 10%), the solution is discarded.

2.5 The Normalization Constant

A detailed description of the conservation of energy fordbeof equations is given in the
following section. First, we analyse the general conseaadaw for the special magnetic
field configurationB, = By sin §. Then we substitute the solutions, which are associated
Legendre Polynomial expansions multiplied by a constatat ihe energy expression,
and try to find a value of the constant for a special definitibar@rgy. This value of the
constant is our normalization quantity.

The purpose of normalization is to make the total energy ldqueaconstant and from the
expression of energy we can infer if instability is present.

Let us now multiply the equation (2.26a) by.

8u€ g 8]1 BO 8[)9 QBO
=% 20 cos b g — ==
Ug B 0 COS Ouguy + Rou@ 50 MopRoue 90 + opRe

cos Bugby = 0. (2.35)
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In addition, we multiply the equation (2.26b) ly,

U6 1 200y cos ustip+—I—u, 2 —
oy e oSttt B 06 opR. " 6 mopR,

cos Buybg = 0. (2.36)

Adding these two equations gives

g 8h qg 0h BO 869 B() 8b¢

19, ,
2art o) ¥ ptegg T e 0s T R, 00 mmpR. 06

B
0 cos Ouyby + cos Ougby, = 0. (2.37)

pop R, MopRo
Multiply the equations (2.26d) and (2.26e) by 1op andby/ 11op respectively

1opdt 2 popR, 96

1 00, B b, Dugy

1opdt 2 popR, 90

Adding equations (2.37), (2.38) and (2.39), we obtain

— 0, (2.38)

~ 0. (2.39)

1 0( cazy e b2 N ﬁ) N i oh g Oh
2010 ¢ Lop  Mop 989 R,sinf d)@gb
BO a BO 8 2BO
— —(ugby) — ———=——=—(ueb O(ugby — ugbg) = 0. 2.40
topRo 09 (ugbo) topRo 09 (tobo) + HopRy (ugby = ughs) = 0. (2.40)
Multiplying the equation (2.40) by{, yields
Hyo, L , o b3 2. gHy Oh gHy, Oh
2T T T TR, 90 T Rysin0" 00
ByHy 0O ByHy 0 2ByH,

ugbyg —————(uyb O(ugby — ugbg) = 0. (2.41
~ popR, 8¢< )~ topRo 8¢(u¢ o) * HopRy (ughy —uobs) = 0. (2.41)

Multiplying the equation (2.26c¢) byh

g@hz gH, h@(sin Oug) N gHy | Ouy
2 0t R,sinf 00 R,sinf  0¢

Adding equations (2.41) and (2.42), we obtain

— 0. (2.42)

97[_[02
R, sinf 0¢

0 (H b Hy 0
—{70(u2+ ¢+__|__9)_|_gh2}+ g — (sin Qugh) + (ugh)

ot op  pop’ 2 osinf 00

ByHy 0
~ opR, 09

ByHy 0
tiopR, 09

2By H,
popRo

= (uoby) — 57 (Ughs) +

COS G(Ude) - u¢b9) 0.
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The terms with velocity and height can be arranged in a dererg

0

1, v b2
a{%(ug%— . )+gh2}+gH0V-(ﬁh)

Hop  Hop

BoH, 8( ) BOHO 0 wh )+ 2ByH,
~ opR, D¢ fopR, 06" " LiopR,

With respect to the above equations, they are related tabrge per mass unit. Let now

COS 9(u€b¢ - U¢b9) 0. (243)

us consider the total energy which could be calculated bytiptyihg the last equation
by the constant densifyandintegrating over) andé:

0 pH b} b3
//E{%(u§+ ) S A pghQ} dS+// pgHoV - (@h) dS

Hop MOP

ByH, R //
(@-b)dS + cos@ub—ub dS = 0.
//MoRaéb oo obs = tsbo)

(2.44)

The second integral is equal to zewehen integrating ovep because of the periodicity

and also ovef because of the boundary conditions at the poles

. ngO Ohuy
//ngOV (th) dS = / / 39 (sin Ohug) + 9 dfd¢ =0

The third one vanishes too when it is integrated avdrecause of the periodicity of the

solutions

/ /8¢ubsm8 d0d¢ = /{ Blg—or — [ - bg—o} sin® df = 0.

Then, the equation (2.44) becomes

pHo b, b ,09 >
2bud+ 2+ Ep2las
//315{ o Hop Moﬂ) }

2B, H
// . 00 cos O(ughy — ugbg) dS = 0. (2.45)
O )

Performing a Fourier analysis for the equations (2.26d) @h#6e), takingl? and
proportional toe™ ¢~ with w real, the case whean is complex will be explained in
the section 2.5.1Then we get:

mBO
u )
R,w ¢

B
b@ = —Tgo: U and b¢ = —
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also, we substitute into the fourth integral,and realise the term(uyb, — usby) is zero.

The final equation represents the variation of the energyetgo time

pHo b, b3 pg 2
+— + —h ds = 0. 2.46
// ot~ 2 o Hop Mop) J (2.46)
This is a conservation law, for the system, therefore tha tatergy, is defined by
LT b, b pg 2}
- —(u +—+—)+=h ds. 2.47
// { 2 (15 + g Hop ,UOP) 2 ( )

Turning now to the numerical calculation of the normaliaatiunction for the equations,

we return to the original variables (2.28) by

u _ 2iQ Rotg o 2Q0 Ryt
o sin 6 " sind
by = ZFB_OEG’ by = 505¢7 b 49(2)]-1’(2)7).
sin 6 sin 6 g

Alternatively the energy takes the form

Ho4O2R? HyB? - 8pQ i R:
// PROZOT0 (a2 4 i) + 2020 (2 + B7) + 0oyt dS = E.
C2sin?0 2/19p sin’ 0 g
(2.48)

Substituting the parameters= 4Q2R?%/gH, anda? = v? /402 R? for v% = B2/ pop, We

have a final equation

2
//pH02§22R2{ 9(u9+u¢)+ 9(62+bz)+en} dS=FE. (2.49)

Analogous to Longuet-Higgins (1968), we set the total eperg
E = 4npH,Q%R;.

Substituting the definition into the equation (2.49) anegnating with respect to, we

have
T 2
/ {L(ﬂg + ﬁi) + — (b2 +02) +en } sin fdf = 1. (2.50)
0

sin? @
Next, we substitute into the equation (2.50) the Legendpaesgion solutions multiplied

by a normalization constant,

g =7y AVPMp) @m0 by=~ ) BUBMp) €M,

n=m
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=7y ONPI(u) ™ by =7 DIPI(p) ™

n=7) EVPT () Mo

We use again this important result

9 N N

* f}/ m m* m m
Ugly = B) Z ZAnAk P () P ().

n=m k=m
where the star means the complex conjugate quantity. Afieresalgebra steps the

equation obtained is

1 .2 © m Am* mom* 2 m Rm* m ym*
/_1 2 {ZZ (1 —p?) i (1 —p?)

PP (p)  dp=1.

+ eE,TE,Z”*}

n=mk=m

(2.51)

There are some integrals to be evaluated in this equation

2 oo 00 1 m m
?{Z Z(AnAk +CCY) 4 (BB + Dy Dj! )}/1 (5252)( ) dp

n=m k=m

2 1
g m m m m

The last integral has been calculated by Abramowitz andubtébo064)

[ Prorrd= g2

Therefore

N N 1
?:E:E:[(Cncn + AT A™) 4+ o (DM D™ + BMB™)] /1% dp
n=m k=m -

N
2(n+m)!
EmE™ .
+)_CEE] @nt D(n—m)!

n=m

(2.52)
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We are therefore able to calculate the value of the normadizaonstanty

T = B

whereFE’ is given by

LR () B (k)

N N
B = SO[CrCm 4 ATAT) 4 o2(DI DI + BB / AT gy
n=mk=m -1 — M
N
2(n+m)!
+§n€ n o+ 1) (n—m) !
(2.53)
Rearranging the expression
N N
E'=3 "3 [(Crem + AP AT) +o*(Dy Dy + By By )|,
n=m k=m
N
2 !
+ > BB (n+m) (2.54)

" 2n+1)(n—m)l,

where the index runs different for some coefficients thaesthFor first parity problem,
the value ofn for the coefficientsA” and B aren = m, m+2,m+4, ...., also forC",
DrandE" aren =m+1,m+3,m+5,..... For the other parity solution, the index

runs in the opposite way. The integia}., has the following result

0 if n andk have different parity
= e if n<k, for nk same parity (2.55)
{EAm)! if k<mn, for n,k same parity

m(k—m)!
2.5.1 Energy Equation for Complex Eigenvalues

When the eigenvalues are complex, the témgb, — u,by) in the equation (2.45) is not

zero, then we have to evaluate this expression. In genémleigenfunction for the
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velocity, can be expressed by

1 - - *
,ae — 5 |iu662(m¢—wt) + aze—z(mqb—w t) )

As a consequence of the complex form of the eigenvalues w, + iw;, and the

eigenfunctions, the integrals ov¢rare
2w
/ lugl*  do = Tujuge*t,
0

and

2 T _ _

/ upby do = §(a;b¢ + tgh,) ™.
0

Then, the integral (2.45) takes the expressionpios 1

T ~ 12 ~ 12 52 [;2
U/ {|u0|+\u¢>| +a2|¢>\ + [by|
0

sin’ @ sin’ @

cosf - - y )
+ E‘U‘Q +a? o e(bgb¢ + b¢>b9)} sin 0d0

=0,
(2.56)

whereo is the growth rate, defined by = w;/2Q,. For growing modes the last term
must be negative to compensate the other positive defimitestef the energy equation
(2.56).

2.6 Second Order Differential Equation Formulation

The original system of equations for a shallow water modelmsimplified to a second
order differential equation faf, and forn as follows. Substituting the components of the

magnetic fields from (2.29d)-(2.29e) into (2.29a) and (B)29hen, the equations are

(A% — m2a?)ig + (A + 2ma?) iy + A(1 — ,ﬁ)g—” — 0, (2.57a)
v

(N —m*a?)iy + (N + 2ma®)piig — Amn = 0, (2.57b)

A1 — 12y — (1 — ) 2% _ miiy = 0. (2.57¢)

op
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2.6.1 Differential Equation for g

From equation (2.57c)

1
iy = — [ — Diig+ N1 — 2)n]. (2.58)

m

After substitutingi,, into (2.57a) and (2.57b), we obtain
m(A —m?a?)ig + eA(\+2ma?) (1 — p®)n — (A +2ma*) uDig + dmDn = 0, (2.59)

—(A2 —=m2a?) Dig + [(A\? —m2a?)e(1 — p®) — m?) Ay +m(\+2ma?) piig = 0. (2.60)

From equation (2.60)

1
(07 = m2a?)e(L = %) = ]

) = {(A2 = m2a®) Diig — m(\ + 2ma®)piig}. (2.61)

From equation (2.59)

o (A+ 2ma?) Oty € (A2 —m?2a?) _

= - = 2ma’) un — . 2.62
A@ﬂ m "o — (A +2ma)un A= (2.62)

Taking the derivative of equation (2.60) yields

2 2 92 2 82126 aﬁg 2N ~
—(ANw —ma”) (1 — p*) o + A(m + QA)ME + m(A 4 2ma”) g+
(2.63)
A2 = m2a?)e(1 — ) — m2]g—7’ —2eA(A2 — m2a?)un = 0.
1L

Substitutingy andg—z into equation (2.63), and simplifying the expression, weeha

82129 2m2 0129
2
U= 1) ¥ e = mea)e(t = ) = ) O

2 2)2, 2 2
{E()\Q_mZQZ)_m()\—l—Qmoz)_e()\—i-Qmoz),u m
(A —m2a?) (N —m?a?) (1 -p?)

B 2em (A + 2ma?) p?
(07— mea?)e(1 —22) — )

}ag —0. (2.64)

This is a complicated second order differential equatiarttie variableu,, we solve it

numerically or asymptotically in certain limits.
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We may also analyse the limit, whernends to zero. Then, & < 1, the equation (2.64)

reduces to

D*tip Dig {_ (A + 2ma?)m m?

(1= =2y e mieh = yiio = 0. (2.65)

This is the Legendre differential equation, a second-oodéinary differential equation,
it occurs in numerous physical problems, specially in $itus with axial symmetry

(Riley et al., 2006), which can be written

0y oy m?
— 2—— —_— -_—_n_—_—_—— pu—
=58~ 2+ fuln+ 1) = 7y =0 (2.66)

where the parameteris a given integer numben this way our solutions are finite and
then physically relevaniThe solution is known as the Associated Legendre Polynsmia
g = B (1),

wherem is the azimuthal wave-number, ands the poloidal wave-number. Therefore

the dispersion relation will be

(A + 2ma?)m

We have the following formula, for different valuesof
n(n + 1A% +mA +m?a?[2 —n(n+1)] = 0. (2.68)

This expression corresponds to td) equation in the article Zaqgarashvili et al. (2007).

Solving the quadratic equation far

—m — y/m2 — 4n(n + 1)m2a2[2 — n(n + 1)]

A= 2n(n+ 1) ’ =09
and
B 7 2~2[9 _
\_ = y/mE = dn(n + Dim*a?2 (£ 1)] (2.70)
2n(n + 1)
where\ = ;2.

2Q0

These equations correspond to dispersion relation of niegRessby waves. The first
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one is referred as fast magnetic Rossby waves and the seoend ceferred as slow
magnetic Rossby waves. Feismall these fast waves become the ordinary Rossby waves

travelling to the west
—m

R —— 2.71
A n(n+1)’ ( )

and the frequency of the slow modes is given by
A =ma?[n(n+1) —2). (2.72)

These results are corresponding to the formulas (47) andnZ&qarashvili et al. (2007).
This discussion is concerned about oscillatory solutitias tepresent a train of waves.
Their dispersion relation relates the frequencyor \) to a functionf (k) of the wave
numberk

w= f(k).
In this case the wave numbers are represented andn, the azimuthal (longitude) and
the poloidal (latitudinal) wave number respectively. Fritnig relation we can deduce the

phase speed,, and the group speed of the wavgs
w Ow
Uph = 1 and Vg = o
The group velocity is the speed in which the energy and inédion travels (Vallis, 2006).

The phase speed and the group speed for the magnetic Rossleg iInahe azimuthal

direction is:
=200 R, :
Uph, = Uy = m, Fast magnetic Rossby mode (2.73)
vpn = vy = 2QRoa’[n(n +1) —2].  Slow magnetic Rossby mode (2.74)

We note that the group speed and the phase speed are equathfontdes.

2.6.2 Differential Equation for 7

From the equation (2.57b)
. 1

Uy = m{kmn — (N =m?a?)iy}. (2.75)
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Differentiatinguy, we obtain

8129 1]9 1 87] 2 2 9 8%
— =t — — (N — — 2.76
o il - (A + 2ma?)u ma,u ( ma’) o (2.76)
Substituting‘r’a%9 into (2.57¢), we have
AN+ 2ma?) (1 — ) un + (A +2ma?) (1 — p?)ig — Am(1 — ,u2)§—77
7
2 2 2 2 811¢ 2\, ~
+(A*—m ) (1 —p )m—m()\—i—Qma Juug =0.  (2.77)
We substitutei, into the last equation
—[(N* =m*a?)(1 = p?) + m(A + 2ma®)p?] iy + (X — m*a?)(1 — ,uz),u%
u
A[m + e(A + 2ma®) p®] (1 = p?)n — Am(1 — ,uz),ug—n = 0. (2.78)
L
On the other hand, we substitutginto (2.57a) and the result is
Am(A2 —m?a®)n + [()\ + 2ma?)p? — (N — m2a2)2} Ug
2 2y, On
+AN +2ma”)(1 — p )u% =0. (2.79)
From this equation, we can find an expressionigrthen
i A
? = (A2 —m2a2)? — (A + 2ma?)?u?|
2 2 2 2 2y ON
[m()\ — m2a2)n + (A + 2ma?)(1 — u )u@]. (2.80)

Differentiatinga, from the last equation, we found an expressionéggr

iy 1

Op [V = m?a?) — (A + 2ma?)ps?]

{2(A +2ma’) iy + [mAN — m?a®) + A(A + 2ma®)(1 — 3,f)]§_77
"

82
+AN + 2ma?)(1 — uz)uﬁ—/g}. (2.81)
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Then, we substituteag‘—ud’ into the equation (2.78), rearrange the terms and obtain

2(A + 2ma?)2 (A2 — m2a?)(1 — p?)p?
{ (A2 —m2a?)? — (A + 2ma?)?u?]

— [(Z? = m?a?)(1 — %) + m(\ + 2ma?)p?] }%

(A +2ma2)(A2 — m2a?)(1 — p?)2u2 0%y

I a2 O Camatma g+ e 2mat)i] (1= )
m(\? A+ 2ma?) (1 — 3u? o

+/\{ o (/\2 N m2a2)[ ([()\2 m2 a)2) (_ (—;4_ 2m§2)2u2]lu ) }(1 - N2)/L£ =0.

(2.82)

We obtain the final equation when substitute the expressioiffrom equation (2.80)

into the equation (2.82)

N : (A +2ma?2(1—p?) ] 2

o 2 _ 2
)a,ﬂ 2N —ma) [(A%2 = m2a2)? — (A + 2ma?)2u?] Mau

A\ —m?a®)(1 - p

2, 2

2002 _ 12,2
mZ(\” = m7a’) + e[(A\% = m%a®)? — (A + 2ma?)??)

(1—p?)

—1—{ —m(\ 4 2ma?) —

2m(\ 4 2ma?) (A2 — m2a?)? } i
(2 —m2a2)2 — (A + 2ma?)22] ST =
(2.83)
This equation could be written in the form
9% (A +2ma?)?(1 — p?) an
(1_ )a 2 +2{[()\2_m2a2)2_()\_’_2ma2)21u2] —1}/1,@
—m( + 2ma’) m” € 2 2 22 212 2
+{ (A2 —m2a?) N (1—p2) + ()\Z—m2a2)[()\ —m“a)® — (A 4 2ma*)“p”]
2m (A + 2ma?)(A\? — m2a?) } .
[(AZ —m2a?)? — (A + 2ma?)?u? ="
(2.84)

This is a complicated second order differential equatiaritie variable), we will need

it for solving analytically in some special cases.
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In summary, in this chapter we developed the numerical nietbosolving the MHD
shallow water system and the ordinary differential equafiermulation that will be

important to find asymptotic solutions.
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Hydrodynamic Shallow Water System

3.1 Solving the System of Equations for the Non-

magnetic Case

In the absence of magnetic field,

0, the set of five equations (2.26a)- (2.26€)

reduces to three equations, known as Laplace tidal eqsateimch have been solved

by Longuet-Higgins (1968). The following chapter of thig$iis moves on to describe in

detail the solutions of the shallow water system. A summétigederivation of Longuet-

Higgins (1968), for the dispersion relation for differemd of waves is presented here.

In the last section, we will present our numerical calcolasiand compare with Longuet-

Higgins results.

Let us now consider the Laplace tidal equations

8u€

ot

g Oh

R,00
_9 o _,
R,sinfo¢p
HO 8u¢ .
R,sinf 0¢

2Q cos Ouy + 0,

8U¢

ot

on ,
ot  R,sinf

+ 28 cos Bug +

J(sin Ouyp)
00

(3.1a)

(3.1b)

0. (3.1¢)
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For this problem, Longuet-Higgins (1968) has found two megg: large and smadl =
402 R2 /gH, and the behaviour of the oscillations changes dependinbismparameter.
In general, there are three types of waves: gravity wavessiRoor planetary waves and

Kelvin waves.

3.1.1 Case for Small Values of
First Class Waves: Gravity Waves

This kind of waves is produced by the action of gravity as #s&taring force in the
system. They are common in stably stratified layers of fllidytcan propagate in the
vertical or horizontal direction (Gill, 1982), and eithexstward or westward in this case.
Gravity waves propagate as pressure gradients and halatinergence, caused by the
gravitational field, (Hines, 1972), see figure 3.1. If thedlomoves from the position in

blue to the position in red, this oscillation produces a f{paschange in pressure.

Fluid diverges horizontally

Figure 3.1: Gravity waves in a fluid are produced by the gravity force atoring force and

propagate as pressure gradients and horizontal divergience

Beginning with the equation (2.84) for the magnetic paramet= 0, we will derive the
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dispersion relation and the eigenfunction for the heigtitodl in gravity waves

(1—p?)
(A% = p?)

0?n

m? m(A\? + p?)
ou? *

) =) " A=)

n = 0.
(3.2)

The numerical evidence shows that the gravity waves cooresio the highest frequency

+2 { — 1] ug—Z+ {ew — p?) —

oscillation. Then, we consider in this part the case wherfrimency is high\? > 1
ande < 1, hence, the factoré\? + ;?) and (A\? — ;%) reduce to~ A%, For the first
order derivative of this differential equation, we neglems of ordeil®(A~2) and for
the factor proportional tg only the terms of orde®(\?) will be taken into account. As a
result of this simplification the expression reduces to tegdndre Differential Equation

(1-— “2)% -2 g_,Z + Men = 0. (3.3)
The solution for this differential equationis= P, (cos ), and\% = n(n + 1), where
nisanintegern =1,2,3, ....

Consequently, the dispersion relation will be

\/ 1)gH,
A= @ andso w=+ n(n; J9Ho (3.4)
0

These waves are also called First class wavescan@spond to the formulas (4.4) and
(4.5) in the article of Longuet-Higgins (1968nd their dispersion relation is plotted in
the figure 3.2. This reflects that whens small, the frequency is large and decreases
when the rotation parameter increases.

Interestingly,us ~ 1/X andu, ~ 1/X, so when\ is large the amplitude of is larger
compared to the amplitude of the velocities. Then, the piateanergy is the major

contribution to the mechanical energy, because the andglitdi is the highest.
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AN =

> 3 3 5

Figure 3.2: Dispersion relation for gravity waves.

We will find First class waves or gravity waves for small vaoée numerically in section

4.1 where\? is proportional tal /e and the eigenfunctions are the Legendre Polynomials.

Second Class Waves: Rossby Waves

Rossby waves are produced by the effect of the rotation afytsiem on the fluid (Tritton,
2012). In the Earth, they arise from the latitudinal vadatof the Coriolis force() x 7,
and the conservation of the potential vorticityasw + f with @ as the vorticity of the
fluid (Vallis, 2006). In the northern hemisphefe-= 2}, sin © increases with the latitude
© = 90 — 4. If fluid is displaced northward, sincgincreases, s@ must decrease, see
figure 3.3. If fluid is displaced southward, has to increase. In this way a westward

propagating wave is generated.
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N a<o:)

Direction of motion
\ I 7 W 7 Longitude ¢

(Co>0

Latitude ®

Figure 3.3: Rossby or planetary waves are produced by the conservadtitire potential

vorticity ¢ = @ + f, wheref = 2Qsin O, the resulting effect is a shift to the west of the

fluid.

In this section, we will derive the dispersion relation fayd’by waves. We start from the

equations of the shallow water model without magnetic fieldJtiplying the equation

(3.1b) bysin ¢
%(sin Ouy) + 2€ cos 6 sin Huy l%og_z =0. (3.5)

We differentiate the last equation with respecf to
g 0°h

: 0 :
a@(sm Ougy) + %[290 cos 6 sin Quy| + Ro 9098 0. (3.6)
Rearranging this equation, we obtain
00, . g .. 9 g 0*h
a@(sm Ouy) + 2€ cos 9%[8111 Oug] — 2Qpsin” 0 ug + Ro 9098 0. (3.7
Differentiating the equation (3.1a) with respectito
2
0 dup _ 2€) cos 98%) 9 Oh 0. (3.8)

0t 00 96 R 0006
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We subtract the equations (3.7) and (3.8), the result being

% %(sin Ougy) — %—qj;] + 20 cos {%[sin Oug| + 88—12) — 20 sin? Quy = 0. (3.9)

Taking the equation (3.1c) and rearranging it, the formsila i

Rysin0oh 0, . Jug
H, ot + 89<Sm0u0> + 90 0. (3.10)

The parametetr = 4Q2R2/gH, and the variable) = gh/2Qy R, will be introduced in

the above equation

e Onp 0 . Oug
Q—%E—F%(Sln@ud‘i‘a—gﬁ—

We study the limit case whentends to zero, we can say thas small, and the equation
(3.11) becomes

0. (3.11)

o, . 0
%(sm Oug) + 8i¢¢ = 0. (3.12)
Returning to the equation (3.9) and using the result (3.tt®),second term of (3.9) is
zero
J|o,. Ouyg . 9 -
5% %(sm Ouy) — 90| 2Qp sin” fuy = 0. (3.13)

The stream functio®, related to the trajectories of the particles, is defined by
u=Vx (V(,0o,te,).

The components of the velocity can be written as

1 oV 1 ov

~Rosmdos A W=

Up

Hence, if¥ does not have radial dependence

1 a . Ouyg 1 o (. 0V 1 0%
— | = Ouy) — —| = ————— 0— | - —————— = —V?U.
Rosind |99 " 0ue) 8@5} RZsin 0 00 <Sm ae) R0 0@ ¥
Dividing the equation (3.13) by, sin ¢
o 1 a . Ouyg 20 | B
am [@(Sln 9u¢) — 8—¢:| — FO S111 QUQ =0. (314)
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We change the variable of the above equatio¥r fgiving

0y 200V
A Vi 0. (3.15)

This equation has solutions of the forin = P (cos #)e'™¢=+") where P™ are the

associated Legendre polynomials. Therefore, when we isutiesn the equation (3.15),

the result is

290m
R3

We applied the properties of the associated Legendre €liffexl equation to evaluate this

wVU —

T = 0. (3.16)

derivative:V?¥ = —n(n + 1)/R2W. The dispersion relation of these waves is

2Qom
=——. A7
“ n(n+1) (317

These are called Rossby waves and from the minus sign of tragieq it is clear that the

waves travel to the west, this is due to the vorticity whiathuoes westward motion.With

respect to the dependence witht shows that the frequency does not depend.on

A= ECESIE (3.18)

In this derivation, we have found an expression for the d&pa relation of Rossby

waves for small values of these formulas correspond to the expresion (4.8) andi.9)

the article of Longuet-Higgins (1968).

3.1.2 Case of large Values of
Type 1 and Type 2

Starting from the ordinary differential equation (2.64) floe equations of MHD shallow
water system, a complicated second order differential ®mudor the variablet,, we

will solve it in asymptotic form.



50 Chapter 3. Hydrodynamic Shallow Water System

In this case, when = ( the equation (2.64) becomes

82126 2m2 0&9
2
SR PR e )y
_[m 2 _ 1 2.1 _ 2\ _ 2 2emA\p? -
{5 +en T e =) m]+[A26(1_M2)_mz]}u9_o. (3.19)

We will take the limit case whenis large, then, the factdi?¢(1 — u?) — m?] can be

approximated tes \2e(1 — p?)

82129 2m2 8129 m 2 Qm/ﬁ
D Y =
op? - A%e(1 — /ﬂ)'u o { Ten < A1 — p?)

: }ag — 0. (3.20)
We confined the solution to the neighbourhood of the equatmmguet-Higgins, 1968),

(1—p?)

taking the limity? < 1, thenl — ;2 ~ 1, therefore the equation is determined by

(3.21)

Analysing the last term in the equation (3.21)¢ is large but\ is small and its order is
A~ O(e!/1), theneX' is order one((1). From this resultA? ~ O(e~'/?). Therefore,
eX? ~ O(e'/?) > 1, in addition,1 /XA ~ O(e'/*). With this consideration, the terf is
order~ O(e!/*), the nextep? goes~ O(e), the terme)? is ~ O(e'/2) and the last term
% ~ p2et/*. This term is the smallest in the equation and it can be nemlesince
1? < 1. Hence, we have

82129 m 2 2] ~
—i—{—XJr)\e—eu}u@—O. (3.22)

We introduce a change of variable

526%/1 and Az—%—i—)ﬁe,

after these substitutions, the equation (3.22) becomes

0t A
% +{om ¢t =0 (3:23)

c1/2
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This Differential Equation is called Weber’'s equation ahé solutions are parabolic

cylinder functions. Let
A=eu+1) v=0,1,2,.. (3.24)

The differential equation becomes

D*tg

e +{(2v+1) = &}y = 0, (3.25)

whose solutions are in the form

1.1/2,,2

Uy = Ce_%52Hl,(£) = Ce 3¢ H, (V4 p),

whereC'is a constant and,, () is the Hermite polynomial of order. The first solutions
are plotted in the figure 3.4 for two different valuescole note that as increases the

waves become confined to the equator. As a result of the equ@i24), the dispersion

< < < <
Iounomon
wnNn = o

. L
< < < <
wnNn = o

. L

@ [
o

90

@ [
o

0 10 20 30 40 50 60 70 90 0 10 20 30 40 50 60 70
latitude latitude

Figure 3.4: Solutions for the velocityuy for v = 0,1,2,3 .The first panel shows the

solutions fore = 100, the second panel fer= 1000.

relation of the waves is
A2 — ? — 220 4+ 1), (3.26)

This is a cubic equation fox

po vy om g (3.27)

€l/2 €
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We will find an approximate solution. For the first approximoatwe neglect the term

m/e, then, equation (3.27) becomes

2v 41
v—i%%lzu and  A=0. (3.28)
€
The solution for the first equation is
2v 4 1)1/2

We add more terms to this approximation

(2v 4+ 1)1/2

A=t

+0. (3.30)

Substituting this approximation into the equation (3.2i8nce

Qu+1Y2 17 Qu+1) [ (2v+1)2 m
—a ol — VP i ) —?_0, (3.31)
in order to find an expression far we neglect terms with orde¥ and superior and
obtain
m
The first two solutions are approximated by
9 1 1/2
A= £ Zvtl) m (3.33)

A apn (4v +2)
They are called Type 1 waves and the equation (3.33) is tmeuiar (8.9) in the article
of Longuet-Higgins (1968), and correspond to gravity watraselling eastward and

westward. The third solution is approximated by the equatio

5?—@221%—f§:o. (3.34)
We neglect the term with?
5__éﬂé2+w (3.35)
Therefore, the solution will be
A= m (3.36)

CAR22u41)



Chapter 3. Hydrodynamic Shallow Water System 53

These solutions are called Type 2 waves and are plotted figime 3.5, and describe the
Rossby waves travelling to the west, when the paramesdarge. The formula (8.33) of
(Longuet-Higgins, 1968) is our (3.36].he theory for waves trapped at the equator was
developed by Longuet-Higgins (1968) in section 8.

Figure 3.5: Dispersion relation for = 1 andm = 1. The blue and green lines correspond
to the positive and negative values, equation (3.33), (Bravaves travelling eastward and
westward), the red line is related to the equation (3.36Rossby waves travelling to the

west.

The equatorial trapping of the waves is shown by the restiltsi®s method. When the
parametet is large the waves become concentrated at the equator,dsechthe factor
e~2¢"*#* in the solutions, so whenis large the equatorial trapping increases.

The solutions for small for a givenn (poloidal wavenumber) are associated with the

largee theory waves withy wavenumber, in this form
v=n—m-+1, Westward propagating gravity waves

v=n—m-—1, Eastward propagating gravity waves

As shown in the article of Longuet-Higgins (1968), the nuicedrresults show which

solutions in the low limit match with larges waves. The number of nodes of a solution
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for e small is expected to be the same than the correspondingasolatthe case for
large, but this is not always true, especially i very large.

Although, for waves travelling to the east, the mode m = 0 always corresponds to
the Kelvin mode in the largetheory. Rossby modes are relateduby: n — m. However
there is anixed Rossby-gravitywave travelling westward which for largeorresponds

to ther = 0 gravity wave in the formula (3.33) with the minus sign.

Type 3: Kelvin waves

A Kelvin wave is a kind of non-dispersive gravity wave where Coriolis force balances
against a topographic boundary (Gill, 198R) this case the equator acts a wave guide.
We will start the analysis from the equations (3.1a), (3.4b) (3.1c) and derive the
dispersion relation for the Kelvin waves. As a result of thisience of a boundary, we

set the velocityy = 0. This assumption can lead to the next set of equations

g Oh
2Q cos Quy, = R o0’ (3.37)
8u¢ o g oh
ot Rysinf ¢’ (3.38)
Oh | _Ho %uy (3.39)

ot Rosin 06
We perform a Fourier analysis in the foretf”*~“*), Hence the equations (3.38) and
(3.39) change to

__gm
Wity = Rosind (3.40)
mHO
wh R (3.412)

We deduce from the equation (3.41) that= 5—}%h and substitute it into the equation
(3.40), obtain a result for the frequency

S (3.42)

==
w Re N
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The negative value oA must be discarded, in order to have finite solutions. The
colatituded is related to the latitude through this expression= = /2 — 6. We consider
latitudes near the equator, thérthe latitude is small, near zero. Therefore, the quantity
cosf = sin ©, can be approximated by O, alsosinf = cos® ~ 1. Making these
approximations in the equations (3.37) and (3.41) and gubsg u, = %h into (3.37)

we obtain
0_h B _QQORO
00 N gHQ

In terms of the parameterand the latitude®, the equation for the height becomes

Oh. (3.43)

oh
55 = ~Veon. (3.44)

The solution for this differential equation is
o2
h = hoe VT, (3.45)

wherehy is a constant. The solution gives equatorially trapped walspending on the
value ofe and a balance between the buoyancy and the Coriolis for¢eindrth-south

direction is produced.

3.2 Our numerical results

In the complete range of values af we can reproduce the plots of Longuet-Higgins
(1968), for\ against with the numerical method developed in section 2.4. Thesdtse
are shown in the figure 3.6, the left panel shows some grawgesntravelling to the east,
the moden — m = 0 is the Kelvin mode for large values ef The right panel presents
westward propagating waves, the modes in the upper partravéywaves , the green

line is themixed Rossby-gravity modeand the lower modes are the Rossby waves.
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10 10° 10
1/e'/?

Figure 3.6: Plot for A\ againste, m = 1 anda? = 0. Modes travelling eastward at the left

side, the modes — m = 0 is the Kelvin wave. At the right the waves propagate westward

Our numerical results are summarized in the tables 3.1 @hd8egative frequencies
correspond to waves propagating westward (table 3.1)ces|yethe first Rossby mode,
while positive frequencies correspond to modes propagaastward (table 3.2), this
example is the first gravity wave far= 1. Our expansions are truncatechat N. Since

the expansions should ideally extend to infinity, we exple&t nore accurate results will

be obtained with largeN.
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Table 3.1: Comparison between the eigenvalues obtained and the sesultonguet-
Higgins, form = 1 and westward modes. First Rossby mode, takihg- 10, N = 40 and
N = 85 with a? =0

€ ALH A10 A0 Ass
0.0886  -0.498896 -0.4989 -0.4989 -0.4989
0.1254  -0.498440 -0.4984 -0.4984 -0.4984
0.1776  -0.497795 -0.4978 -0.4979 -0.4980
0.2516  -0.496885 -0.4969 -0.4969 -0.4969
0.3567  -0.495602 -0.4956 -0.4956 -0.4956
0.5063 -0.493793 -0.4938 -0.4938 -0.4938
0.7197  -0.491248 -0.4912 -0.4912 -0.4912
1.0253 -0.487679 -0.4877 -0.4877 -0.4877
1.4649  -0.482695 -0.4827 -0.4827 -0.4827
2.1018 -0.475784 -0.4758 -0.4758 -0.4758
3.0328 -0.466312 -0.4663 -0.4663 -0.4663
4.4094  -0.453575 -0.4536 -0.4536 -0.4536
6.4730 -0.436961 -0.4370 -0.4370 0.4370
9.6096 -0.416252 -0.4163 -0.4163 -0.4163
144326  -0.391949 -0.3919 -0.3919 -0.3919
21.9011 -0.365279 -0.3653 -0.3653 -0.3653
33.5008 -0.337715 -0.3377 -0.3377 -0.3377
51.5424 -0.310424 -0.3104 -0.3104 -0.3104
79.6418 -0.284115 -0.2841 -0.2841 -0.2841
123.4763 -0.259159 -0.2592 -0.2592 -0.2592
191.9701 -0.235739 -0.2357 -0.2357 -0.2357
299.1591 -0.213933 -0.2139 -0.2139 -0.2139
467.1419 -0.193752 -0.1938 -0.1938 -0.1938
730.7396 -0.175165 -0.1752 -0.1752 -0.1752
1144.9 -0.158115 -0.1581 -0.1581 -0.1581
1796.1 -0.142529 -0.1425 -0.1425 -0.1425
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Table 3.2: Comparison between the eigenvalues obtained and the seslultonguet-
Higgins, form = 1 and eastward modes. First gravity mode, takiig= 10, N = 30
andN = 85 with a? =0

€ ALH A0 A30 Ags
9.87 x 107* 44.7582 44,7673 44.767 44.7673
0.0020 31.5047 31.3761 31.37 31.3761
0.0040 22.1341 22.1154 22.115 22.1154
0.0081 15.5096 15.4702 15.47 15.4702
0.0163 10.8274 10.8365 10.836 10.8365

0.0332 7.51950 7.5250 7.525 7.5250
0.0682 5.18485 5.1844 5.1844 5.1844
0.1412 3.54036 3.5407 3.5407 3.5407
0.2963 2.38685 2.3866 2.3866 2.3866
0.6310 1.58471 1.5848 1.5848 1.5848

1.3648 1.03619 1.0362 1.0362 1.0362
2.9785 0.671475 0.6715 0.6715 0.6715
6.4724 0.436995 0.4370 0.4370 0.4370
13.8319 0.289186 0.2892 0.2892 0.2892
28.9844  0.195169 0.1952 0.1952 0.1952
59.8086 0.133760 0.1338 0.1338 0.1338
122.1518 0.0926201  0.0926 0.0926 0.0926
247.8092 0.0645658  0.0646 0.0646 0.0646
500.4958 0.0452100  0.0452 0.0452 0.0452
1007.8 0.0317520 0.0318 0.0318 0.0318
2025.2 0.0223460 0.0223 0.0223 0.0223
4063.9 0.0157488  0.0157 0.0157 0.0157
8146.5 0.0111102 0.0111 0.0111 0.0111
16320 0.00784323 0.0077 0.0078 0.0078
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Looking at these results, we notice that there is no diffeedmetween théV = 40 or
evenN = 30 results and théV = 85, indicating that a truncation level af = 40 is
adequate in all cases. Generally, there is good agreemvedaeour results and those of
Longuet-Higgins (1968), but significant differences arersat large: values. Longuet-
Higgins did not report his truncation level, but largeequires larger truncation level
and we conjecture that the slight differences between @uitseand Longuet-Higgins at

largee arise because he did not have sufficient resolution in tlye lacases.

We compare the Longuet-Higgins (1968) eigenfunctions withresults, we notice that
the relation between their variables and oursZis= \/en , V = @y/sinf andU =

’&¢/ sin@.

In the figure 3.7, the first column corresponds to the Kelvirdeno — m = 0, which is
trapped at the equator fer> 100. The second column corresponds to the first gravity

wave and is equatorially trapped whepr 10.

These figures 3.8 are gravity waves of higher order, as weaserthe value of — m,

the number of nodes in latitude increases too.
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Figure 3.7: Numerical solution for different values efin eastward modes withv = 40,

m = 1, andn — m = 0 for the first column anaeh — m = 1 for the second one.
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50
6 (degrees)

6 (degrees)

40,

m = 1, andn — m = 2 for the first column and, — m = 3 for the second one.

3.2.1 Modes Travelling Westwards, Class 2n = 1

This figure 3.9 plots the eigenfunctions for Rossby wavesglting westward. The two
first modes:—m = 0 andn—m = 1 are represented in the left column and right column

respectively. It is shown in the pictures that waves arepedpo the Equator when the
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rotation parameter increases.
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Figure 3.9: Numerical solution for different values efin westward modes witiv = 40,

m =1, n —m = 0 for the first column and — m = 1 for the second one.

Generally, there is good agreement between our numersaltseand those of Longuet-
Higgins (1968). The figures can be reproduced with fidelitygl the solutions converge
when the expansions are truncatedvat 40.
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Chapter 4

Magnetohydrodynamics: Numerical

results

This chapter describes the numerical results for the mabgdtodynamic system. This
problem has been solved by Zaqarashvili et al. (2007) fodithi when ¢ and « are
small. The eigenvalue numerical method, developed in@e@ti is used for identifying
and characterising the solutions to the mathematical profah the all range of anda
in detail. We perform a complete survey of MHD waves in thialkiw water system
which exceeds previous works.

Moving on now to consider the effect of the toroidal by vagythe parameteti.. As a
result of the presence of the magnetic field, the Rossby wapésn two modes: slow
and fast magnetic Rossby waves as shown is section 4.2. Maraonew anomalous
slow mode arises. The gravity waves turn into Magneto lak@iravity (MIG) waves,
influenced by Coriolis, gravity and Lorentz forces. Furthere the Kelvin modes are
also present, their main features are enhanced by the fieldaamew Kelvin wave
traveling to the west is excited by the field. In addition te fhresence of the waves,
the magnetic field can drive instabilities, but we will dissuhis in detail in chapter 6.

In figure 4.1(a) which shows scaled frequency as a functiosr b, the red lines are
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two magneto-inertial gravity modes, the green line is thividkenode and the blue ones
are the slow magnetic Rossby waves, these waves all tratieéteast. The dispersion
relation has been modified by a fixed moderate magnetic fielek (0.1). In the next

panel, 4.1(b), the red curves are the magneto-inertiaityrasaves travelling to the west

and the black lines are the fast magnetic Rossby modes.

10 . . 10>
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>
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10 ) . 5 L n . 10 L L

10 10 10 10 10 10° 10" 10
1/81/2 1/81/2

(a) Eastward propagation (b) Westward propagation

Figure 4.1: Dispersion relatiom\ as a function ofl /e'/2, for « = 0.1 andm = 1. Note
that largel /el/ 2 corresponds to slow rotation. (a) Eastward propagationgrdto-inertial
gravity modes (red), the Kelvin mode (green) and slow magriossby waves (blue), (b)

Westwards propagation: Magneto-inertial gravity waveseith and the black lines are the

fast magnetic Rossby modes.

The magneto-inertial gravity waves have the highest frages and their solutions are
a sequence of eigenfunctions in which the frequency ineseagth the number of nodes
in latitude, alternating between symmetric and antisynmimétnctions with respect to
the equator. The perturbation can travel eastward or wedtwilote that ag~'/? is
getting large \ becomes linear with /¢'/2, sow/2Q, ~ /gHy/2 Ry which means the
frequency becomes independent of rotation in this limif2gs— 0. This shows that in
this limit the waves do become gravity waves, which have selspeed of/¢gH,. On

the other hand, for the slow magnetic Rossby wavetends to a constant as— 0,
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showing thatv ~ , for these waves. Similar behaviour is found in figure 4.1@b)}le
westward waves.

Figure 4.2 (a) shows the northward velocity for the first ghiIG modes, the lowest
(symmetric) in blue has two nodes, the next one (antisymao)é@trgreen has three nodes
and the highest (symmetric) in red has four nodes. The Kehade travelling to the
east is represented in graph 4.2(b), it has been plotted=ot, where this wave has the
properties of the first gravity mode. Note that it has only node and is antisymmetric.
The behaviour of the Kelvin wave changes wittat smalle, it has the nature of a gravity
wave, but at large it becomes equatorially trapped and has a velocity whichnest
purely azimuthal. This is discussed further in section £kWw. These plots were made
fora =0.1,e=1,m=1andN = 50.

0.8 T 0.3 T
06l oal ——A=1.2323 |
0.4r 01
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£ £ of
% 0 )
~ ~
< < -0.1
'S -0.2 =
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—o6k A=3.4838 -03
——— \=4.4988
-0.8 ; . . -0.4 . . .
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colatitude (degrees) colatitude (degrees)
(a) MIG waves (b) Kelvin wave

Figure 4.2: Northward velocityiy for « = 0.1, e = 1, m = 1 and N = 50. (a) Magneto
Inertial Gravity Waves travelling eastward, the lowesingsyetric) with two nodes in blue,
the next one (antisymmetric) in green with three nodes aadifhest (symmetric) in red
with 4 nodes. (b) The Kelvin mode travelling eastward, irs tiigimee = 1, it behaves like

the first antisymmetric gravity wave with one node.

Some magnetic Rossby waves are plotted in figure 4.3. In gahethe fast mode is

travelling to the west, the first symmetric mode is represeimi blue and has no nodes,
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the next one in green, is an antisymmetric wave with oneaulditial node and the lowest
of frequency this example corresponds to a symmetric motletwo nodes. In this case,
when the frequency decreases, the number of nodes increBisedowest frequencies
are in panel (b), as slow magnetic Rossby waves travelliripe¢oeast, except for the
first mode which is anomalous and travels to the west as a symemeode. The blue

curve has the lowest frequency for an antisymmetric modeavie node, the next highest
frequency (green curve) is symmetric mode with two nodedtla@red one is the highest
frequency of this sequence, and represents an antisynenbetniaviour and has three
nodes. For the slow modes as the frequency increases theenwilatitudinal nodes

increases too.
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Figure 4.3: Northward velocityiy for o = 0.1, e = 1, m = 1 and N = 50. (a) Fast
magnetic Rossby waves travelling westwards, in blue theesgfrequency and symmetric
without nodes, the green curve represents the followingsyaninetric mode with one
node and the red curve is the lowest frequency and symme#ie with two nodes. (b)
Slow magnetic Rosshy waves travelling eastwards, the hgéedorresponds to the first
antisymmetric mode with one node, the green curve is thensesgmmetric mode with two

nodes and the red curve is the antisymmetric wave with thodesand highest frequency.
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4.1 Magneto Inertial Gravity Waves

A noted above the highest frequencies correspond to magmertial gravity waves.
These waves are essentially Class 1 waves, (Longuet-High#68), interfacial gravity
waves, modified by the magnetic field. In the limit of a stroragmetic field, large, the
frequency increases and the waves become trapped at theeasidlfvén waves, quite
independent of rotationas seen iables 4.1-4.6.

Alfvén waves are magnetic tension oscillations that pgap@along magnetic field lines,
as waves they transport energy and momentum. These aredrsalsand non dispersive
waves (Gubbins and Herrero-Bervera, 2007).

We choose the modes = 1 andn = 2 for m = 1 and vary the magnetic parameter

«. The results are in tables 4.1 (westward) and 4.2 (eastWard) = 1. Tables 4.3
(eastward) and 4.4 (westward) are foe= 2. The moden = 3 for m = 2 is shown in
table 4.5 (eastward) and 4.6 (westward).

Owing to limited resolution, it is possible that the codemaincalculate the eigenvalues
or eigenfunctions with accuracy when some waves undergateqal or polar trapping.
These sharp and extremely localized functions need a langgber of modes in the
expansion to be calculated. For this reason, wheor ¢ are large, we write **** jn

the tables for\ when the value is not certain.

The numerical results for the first MIG mode are summarizedalies 4.1 for the
westward wave. Wher and o are small, the frequency can be calculated with the

hydrodynamic formula (3.4)

V/ DgH,
Y G ”(”; J9Ho (4.1)
€ 0

with n = 1, (Longuet-Higgins, 1968). For largeand smallx, the frequencies can be

computed by the hydrodynamic equation (3.33)

(2u + 1)1/2 m

A==
am €\2(4v 4 2)’

(4.2)
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for v = 1. For largea, the wave speed tends to the Alfvén speed with frequencies
A = +ma. Itis clear that the MIG waves always remain in the supeéealfv regime

(|A| > ma) and are stable.

Table 4.1: Eigenvalues\ for different values ofx ande, Magneto Inertial Gravity Waves

travelling westward fon = 1, m = 1, N = 80.

a 10-3 102 10! 1 10 102 108
e=0.01 -14.400 -14.400 -14.400 -14.398 -16.397 -100.5 ***
e=0.1 -4.7464 -4.7464 -4.7463 -4.7351 -10.501 wrx ek
e=1 -1.7415  -1.7415 -1.7404 -1.6888 -10.050 ¥tk ek
e=10 -0.88188 -0.88185 -0.87935 -1.0516 -10.005 ***x ek
e =100 -0.52836 -0.52840 -0.53222 -1.0050  ***k  dkxx  doeek

Table 4.2 shows the eigenvalues for waves travelling to #st, eéeomparing with the
westward mode. There is no important difference betweenweed and eastward
frequencies, except whenis small. The theory of Longuet-Higgins (1968) establishes
that for smalle westward and eastward frequencies are equal, see equétidrowever
there is a difference in our numerical results in favour ostm@ard waves making the
frequency slightly larger in magnitude.

In the case of MIG waves travelling eastward for= 1, m = 1, this oscillation has
been identified as the Kelvin wave for large values afhere the eigenfunctions are
equatorially trapped anil = me /2. A more detailed account of Kelvin waves is given

in the section 4.4.
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Table 4.2: Eigenvalues\ for different values otx ande, Magneto Inertial Gravity Waves

travelling eastward forn, = 1, m =1, N = 80.

o) 1073 1072 1071 1 10 102 103
e=0.01 13.9 13.9 13.9 13.9012 15.2263 100.5000 ****
e=0.1 42452 4.2452 4.2453 4.2649 10.4999 100.0500 ****
e=1 1.2307 1.2307 1.2323 1.4782 10.0050 ok K
e=10  0.34457 0.34468 0.35618 1.0496 10.0050 o o
e =100 0.10263 0.10309 0.14257 1.005 K el ek

In general for the westward MIG waves the- m + 1 mode for smalk connects to the

v mode in large: theory, see section 3.1.2 and Longuet-Higgins (1968). Vdtjard to
eastward propagating waves, the MIG first madem = 0, turns into the Kelvin mode,
and for the rest of the sequence the made m — 1 connects ta in the larger theory.
Table 4.3 summarizes the normalized frequencyrfoe= 2 andm = 1, for waves
travelling eastwards. For small, the eigenvalue\ can be predicted by the formula
(4.1) withn = 2, for e small, whene is large the values correspond to the expression
(4.2) withv = 0. For largex, A tends toma plus a small variation. This small variation

increases foe small.
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Table 4.3: Eigenvalues\ for different values otv ande, Magneto Inertial Gravity Waves
travelling eastward fon = 2, m = 1, N = 80. Note that **** denotes eigenvalues which

could not be computed accurately for numerical reasons.

a 1073 1072 1071 1 10 10? 103
e=001 24.419 24.419 24.419 24.434 26.269 117.86 1037.1
e=01 7.6851 7.6851 7.6856 7.7409 14.357 108.09 1018.9
e=1 24316 24316 2.434 2.6913 11.839 103.72 *r*
e=10  0.8459 0.84601 0.85661 1.5451 10.833 ****  wkx
e=100 0.37963 0.37989 0.40424 1.2342 10.383 *xkx  hkxx

Figure 4.4 shows the solutions for the velocity field agacwdatitude: The northward
velocity, @y / sin 6, is plotted in the upper part and the azimuthal velodity, sin ¢ is at
the bottom. The first column is far = 1073, for small e where the eigenfunctions
are the Associated Legendre polynomials. Wheimcreases the solutions become
confined to the equatorial region. For a strong field € 5) the eigenfunctions for
weak rotation have changed slightly and for strong rotatien equatorial trapping is
enhanced. Zagarashvili et al. (2009) found equatoriaippged waves, considering an
antisymmetric basic state field with zero toroidal field a #guator. They established
that the variation of the magnetic field across the equatasssciated with the trapping

rather than the asymptotic nature of the parameters.

The magnetic field perturbation shows the same behavioureaselocity, fora large
and e large: the waves become equatorially trapped. The behawibthe magnetic
field is essentially identical to that of the velocities ftinns, because the magnetic field
perturbation is directly proportional to the velocity, Segire 4.5.

Figure 4.6 is a good illustration of the effect of magnetid¢dfien MIG waves. In the
case ofe = 0.01 in the upper panels, the solutions correspond to Legendya@mials

and remain similar fow large. Then, when the rotation parameter is increased, diesv
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Figure 4.4: Numerical solution for the velocity for different values ©fn the magneto-
inertial gravity wave travelling eastward for the secondde@: = 2) with N = 50, m = 1.

The first column corresponds to= 10~2 anda = 5 for the second one.
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Figure 4.5: Numerical solution for the magnetic field perturbation fdfestent values of

in the magneto-inertial gravity wave travelling eastwavdthe second mode:(= 2) with
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becomes trapped at the equator. It is evident that incrgasproduces more equatorial

trapping.
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Figure 4.6: Contour plots of the scaled height for increasinge (0.01, 1 and 100).
Numerical solution for different values efin the magneto-inertial gravity wave travelling
eastward for the second mode and= 1. The first column corresponds to= 10~ with

N = 50 anda = 5 with N = 70 for the second one.



74 Chapter 4. Magnetohydrodynamics: Numerical results

The eigenvalues for the westward propagating MIG wave, 2 andm = 1, are reported
in the table 4.4. It is expected that for small valuesxpfwhen the field is weak, the
frequency can be calculated with the formula (4.1)70& 2 for ¢ small and with the

equation (4.2) and = 2 for largee.

Table 4.4: Eigenvalues\ for different values ofx ande, Magneto Inertial Gravity Waves

travelling westward fon = 2, m = 1, N = 50.

o 1073 1072 1071 1 10! 102 10°
e=0.01 -24586 -24.586 -24.586 -24.598 -26.227 -117.74 -1037.1
e=01 -7.8533 -7.8533 -7.8536 -7.8858 -14.102 -108.03 -1018.8
e=1 -2.6129 -2.6129 -2.6131 -2.6718 -11.719 -103.7  ****

e =10 -1.1119 -1.1118 -1.1088 -1.2956 -10.779  **** e

e =100 -0.67845 -0.67845 -0.67891 -1.1118 -10.358  **** o

For the moden = 2, eastward and westward eigenfunctions correspond to tine sa
Legendre polynomial:P}, whene is small. However, for large the eigenfunctions
for eastward and westward waves are expected to be diffasnt is confirmed in the
figure 4.7, because whens large the westward eigenfunctions evolve toward-a 2
mode, unlike the wave propagating eastward which evolwearits the mode = 1. For
small« values, in the first column, the solutions are the Legendnetfons fore small.
When the rotation parameter increases the waves become&gglya trapped. When
« increases t® the wave becomes more trapped at the equator without areretiite
between west and east modes. It is clear that the magnetcefiblances the equatorial
trapping.

As expected, the magnetic field perturbation shows, in figuBethe same behaviour as
the velocity. Forx large and: large, the waves become equatorially trapped.

Figure 4.9 shows the scaled height of the layer of fluid for egatravelling westward.

Here, the equatorial trapping is evident, wheis large and/ok is large. The main
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Figure 4.7: Numerical solution for the velocity with different valueg ©in the magneto-
inertial gravity waves travelling westward for the seconddan = 2 andm = 1. The first

column corresponds @ = 1072 with N = 50 anda = 5 with V = 70 for the second one.
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difference is, as we mention before, that the westward MI@ena a weak field ¢ =
107?), turns into a higher mode for strong rotation, as we can isdigire 4.9. In this

case, there are more latitudinal nodes.
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Figure 4.9: Contour plots of the scaled heightfor increasinge (0.01, 1 and100) in the
magneto-inertial gravity waves travelling westward fog gecond mode = 2 andm = 1.
The first column corresponds to = 102 with N = 50 anda = 5 with N = 70 for the

second one.
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As was pointed out before, the main differences between svieeelling eastward and

westward are:

e Smalle: the eigenvalues for the westward waves have slightly targguencies
than the eastward ones. In addition, the solutions for théhwnard velocity
correspond to the Legendre polynomig} with different amplitudes. The
amplitude of the waves travelling eastward decreases whieoreases, for the
MIG waves travelling westward the amplitude increases whieereases. This is
due to the fact that eastward made m = 1 has less kinetic energy than westward
modes, in this regime. The potential energy has a major iboritvn for the total
energy in the eastward propagating mode, then, wiiecreases the normalization
constant diminishes significantly, reducing the amplitatithe velocity, Longuet-
Higgins (1968).

e Largee: the MIG waves travelling westward become an degree largeri + 1)

than its analogous wave travelling eastward(m — 1).

However, when botla ande are large, there is little difference between west and east
movements.

Let us now consider one exampleaf = 2 MIG waves. In table 4.5 the normalized
frequency for the eastward = 3 mode is reported. Far small, the values correspond
to the formula (4.1) witm = 3 whene is small, and the largevalues correspond to the
formula (4.2) withy = 0. For« large the frequency is expected to tend to the Alfvén

speed\ = ma.
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Table 4.5: Eigenvalues\ for different values oty ande, n = 3, m = 2 and N = 50 and .

Magneto Inertial Gravity Waves: Waves travelling eastward

o) 1073 1072 1071 1 10 10? 103

e=0.01 34562 34.562 34.563 34.611 39.663 215.92 2030.2
e=0.1 10.885 10.885 10.887 11.048 24.396 206.78 2017.2
e=1 3.423 3.423  3.4288 4.0077 21.636 203.03 2015.5
e=10 1.1224 1.1227 1.1454 253 20.697 201.72 2015.3
e =100 0.44709 0.44778 0.51054 2.2044 20.312 201.55 2015.3

The velocity field illustrated in figure 4.10 shows that thetfmoden = 3 is symmetric
(for @) with respect to the equator. Then, for a weak magnetic fiele-(10~2) in the
first column the solutions correspond to the Legendre fonstibut the largewaves are
equatorially trapped, as shown in the purple curves of thi@émnels fora large.

The magnetic perturbations for the mode= 3 andm = 2, illustrated in figure 4.11,
show larger amplitudes than the velocity plots and the egistrapping is evident for
largea and large-.

Figure 4.12, fom = 3 mode, shows more longitudinal nodes than the previoustsesul
because of then = 2 wave number. Here, the rotation tends to trap the waves at the
equator, and the magnetic field enhances the equatorigitigqpFora = 5 ande = 100
(lower right panel), the oscillation is hard to resolve nuicedly, therefore, in order to

have more clear graphs , we do not consider valuesgreater thars.
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Figure 4.10: Numerical solution for the velocity for different values ofn the magneto-
inertial gravity wave travelling eastward for the first mode= 3, m = 2 and N = 50. The

first column corresponds @ = 10~3 anda = 5 for the second one.
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Figure 4.11: Numerical solution for the magnetic field perturbation fiffedent values of
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Figure 4.12: Contour plots of the scaled heightfor increasinge (0.01, 1 and 100).
Numerical solution for different values efin the magneto-inertial gravity wave travelling
eastward for the first mode = 3, m = 2 and N = 50. The first column corresponds to

a = 1073 anda = 5 with for the second column.

Regarding the differences between eastward and westwapagating waves, we report

the westward MIG wave fon = 3, m = 2 in the table 4.6. The frequencies for small
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a can be computed with the formula (4.1) for= 3 whene is small and equation (4.2)
gives the frequencies for largevhenr = 2. As was mentioned earlier, whenis large

A tends to the Alfvén speed;ma, plus a small variation which depends @n

Table 4.6: Eigenvalues\ for different values ofx ande, n = 3, m = 2 and N = 50.

Magneto Inertial Gravity waves. Waves travelling westward

a 1073 1072 1071 1 10! 102 103

e=0.01 -34.729 -34.729 -34.729 -34.776 -39.644 -215.82 -2030.2
e=01 -11.052 -11.052 -11.054 -11.195 -24.183 -206.73 -2017.1
e=1 -3.5945 -3.5946  -3.5984 -4 -21.537 -203.01 -2015.4
e=10 -1.3265 -1.3266 -1.3348 -2.319 -20.654 -201.71 -2015.4
e =100 -0.69022 -0.69045 -0.71298 -2.104 -20.292 -201.54 -2015.3

The velocitiesiy andu, are plotted in figure 4.13. Whenincreases the waves move
toward the equator, and for large the equatorial trapping increases. As indicated
previously, ifa is very large, the field dominates and the eastward and westwations
present no difference and the equatorial trapping is locete small region ok 15°
near the equatok (= 10 or 100).

The magnetic field components are plotted in figure 4.14 ferNHG moden = 3,
m = 2. Whena is small the solutions correspond to the Legendre polynisniiat if
e is large the waves are equatorially trapped. In the largegime, where increases
the eigenfunctions are shifted towards the equator. Ingesithe amplitude of the
perturbation, for this mode, the amplitude is higher thawilocity amplitudes.

Figure 4.15 shows more longitudinal nodes, because- 2 in this case, and the
equatorial trapping is evident whenor ¢ is large. But in the presence of a strong field,
in second column of the figure, the equatorial trapping has laecentuated, particularly

for o = 5 ande = 100 where the oscillation is confined to a narrow band at the equat
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Figure 4.13: Numerical solution for the velocity for different values ofn the magneto-
inertial gravity wave travelling westward for the first mode= 3, m = 2 and N = 50. The
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Figure 4.14: Numerical solution for the magnetic field perturbation fiffedent values of
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4.2 Magnetic Rossby Waves

Rossby waves or planetary waves are an effect of the corigervaf the potential
vorticity, travelling to the west as a consequence of thatran of the system. In the
presence of a toroidal field this mode splits into two: FasigMdic Rossby waves
travelling to the west and Slow Magnetic Rossby waves tlangto the east. In this
section, we describe analytically and numerically the ptalgproperties of these waves,

and in the chapter 6 we will discuss the instability of theseles.

Consider the Magnetic Rossby Modes in a case when the paamist very small,
(Zagarashvili et al., 2007). Let us return to equation (2.@Ae general differential
equation foru, and evaluate it in this limit, the equation (2.64) can be oeduto
the Legendre differential equation, a second-order orglidéferential equation whose
solutions are the Associated Legendre Polynomials= P)*(cosf), see section 2.6.1

and the dispersion relation of these waves is given by thadtas (2.69) and (2.70)

—m £ my/1—4a2n(n +1)[2 — n(n + 1)]

A= 2n(n+1)

, (4.3)

where the expression with the positive sign correspond®te magnetic Rossby waves
which travel eastward and the negative normalized fregesrace fast magnetic Rossby
waves travelling westward. In the case wheeg- 0, the equation for fast Rossby modes
reduces to\ = —m/n(n + 1) which are the hydrodynamic Rossby waves, (Longuet-

Higgins, 1968). Note from expression (4.3) thadecreases with.

4.2.1 Fast Magnetic Rossby Waves

Some numerical calculations present frequencies whictesponds to fast magnetic
Rossby waves. Moreover, the eigenvalues have been repamtédhe corresponding
eigenfunctions have been plotted. When the magnetic fieddtlaa rotation are weak,

the solutions correspond to pure Rossby Waves and the @mdutire the associated
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Legendre polynomials, see Zagarashvili et al. (2010a) hod/s above.

The first fast magnetic Rossby mode & 1) corresponds to thenagneto mixed
Rossby-gravity mode Matsuno (1966), and this is the highest valueXaf the Rossby
waves. The values of the normalized frequen@re registered in table 4.7. In the first
columns wherex is small, whene is small the frequency satisfies the formula (4.3),
whene is large\ follows (4.2) with negative sign and for = 0.

The second and pure fast magnetic Rossby mode is shown ialilee4.8. Fox ande
small the values agree with the formula (4.3) foe= 2 and for larger, A coincides with

equation (3.36) for = 1,

m
e22v+1)
In general, fast magnetic Rossby modes correspondimgaiod m at smalle turn into

A= (4.4)

modes withv = n — m at largee.

Whena > 0.5 the fast magnetic Rossby waves enters a new regime, and tdréycs
coalesce with the slow magnetic Rossby modes and the fregliecomes complex: the
instability begins. This will be discussed further in creap.

This unstable behaviour is described for fast and slow magRessby waves, as well
as, the existence of a new regime aftee 0.5, when the fast wave becomes subalfvénic
|A| < ma. It can be seen in table 4.7 for= 1 with m = 1, and in table 4.8 fon = 2
with m = 1.

Whenq, the magnetic field parameter, increases an instabilityrscd he first fast mode,
n = 1, collides with the anomalous slow magnetic Rossby modepandmes complex.
The second mode;, = 2, collides with then = 2 slow magnetic Rossby mode and so

on. However, unstable modes just appear whes 1.
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Table 4.7: Eigenvalues\ for different values otv ande, N = 50 andm = 1. Magneto

mixed Rossby-gravity mode = 1: Waves travelling westward.

a 1073 1072 1071 1 10t 102 103

e=0.01 -0.4999 -0.4999 -0.4999 -0.4989 -0.301-3.2i  -0.482 - 92.7i0.498- 992.9i
e=0.1  -0.4988 -0.4988 -0.4989 -0.4883 -0.442 -7.5i  -0.494 - 97.7i0.499- 997 8i
e=1 -0.4880 -0.4880 -0.4889 -0.294-0.1i -0.482-9.3i -0.498.30 -0.500 - 999.1i

e=10 -0.4140 -0.4141  -0.4202 -0.435-0.6i -0.494-9.8i -0.499.80 -0.480-0.8i
e=100 -0.2710 -0.2711 -0.2877 -0.500-99.9i -0.498-9.9i -0.500.9i -0.500- 999.3i

Table 4.8: Eigenvalues\ for different values oty ande, N = 50 andm = 1. Fast magnetic

Rossby Mode: = 2: Waves travelling westward.

a 1073 1072 1071 1 10t 102 103
e=0.01 -0.1665 -0.1669 -0.1999 -0.9034 -5.297 -0.482-92.71  -®-892.9i
e=0.1 -0.1652 -0.1656 -0.1987 -0.8971 -0.443-7.5i  -0.494-97.71-0.499-997.8i
e=1 -0.1530 -0.1534 -0.1886 -0.8086 -0.482-9.3i  -0.498-99.310.500 - 999.1i
e=10 -0.0950 -0.0956 -0.1408 -0.437-0.600i  -0.494-9.8i  -0.499.8i -0.500 - 999.3i

e =100 -0.033  -0.0346 -0.1054 -0.480-0.8i -0.498-9.9i -0.500.999 -0.500 - 999.4i
e =1000 -0.0106 -0.0145 -0.1006 -0.494-0.8i -0.499-10.0i -0.5600.9i -0.500 - 999.3i

Figure 4.16 shows the velocity field. It is clear that thagneto mixed Rossby-gravity
mode undergoes equatorial trapping fotarge, even when the magnetic field is weak.
Also, the main difference between the first column= 10~?) and the second oner(=
10~1) is that there is a slightly decreasing in the amplitude ef\hlocities, even when
« increases in two orders of magnitude. In this regime the wave more influenced by

the rotation.

Notice by comparison between panels 4.16(a) and 4.16@twthilew, is symmetricgi,,
is antisymmetric. The energy for thisagneto mixed Rossby-gravity modes mostly
kinetic whene tends to zero and the wave behaves like a Rossby mode. Whkéarge
the wave is a gravity wave and the ratio of the kinetic eneogy¢ total energy is greater

than 0.75 for the hydrodynamic case, according to LongugtiHs (1968).
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Figure 4.16: Numerical solution of the velocity for different valueseih the fast magnetic

Rossby mode fon = 1, m = 1 and N = 50.

The perturbation in the magnetic field has the same behakidgua high amplitude with
respect to the velocity, see figure 4.17, because as shownatiens (2.29d) and (2.29e),
the field is proportional to the velocity but inverse to themalized frequency. Since

these frequencies are smaller than 1, the amplitudes fee tiiedds must be intense.
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Figure 4.17: Numerical solution of the magnetic field for different vaduef ¢ in the fast

magnetic Rossby mode far= 1, m = 1 and N = 50.

Figure 4.18, it shows that the amplitudes fpiare small compared with the velocity

amplitude, whenv or € are large. It is very clear that larggproduces waves equatorially
trapped, as it is shown in figure 4.18(a) and (c). Also, a gtroagnetic field increases

the equatorially trapping, see panels 4.18(b) and (d).
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Figure 4.18: Numerical solution for the scaled heigitor increasinge (0.01 and100) in

the fast magnetic Rossby mode foe= 1, m = 1 and N = 50.

Figure 4.19 shows the second mode of the fast magnetic Regsgs. In this case,

as reflected in the figureiy is antisymmetric with respect to the equator whilgis

symmetric, opposite to the = 1 case. In the figure we can note that whkes large the

waves become trapped at the equator. Whéncreases from0~3 (panels 4.19(a) and

(c)) to 107! (panels 4.19(b) and (d)), the behaviour remains similatteiamplitude of

the waves are slightly different. Fersmall, the amplitude decreases slightly but dor

large the amplitude increases notably #grand decrease far,. According to Longuet-

Higgins (1968), for the fast Rossby modes the ratio betwepatik energy and total

energy is0.5 whene is large, i.e. kinetic energy are in the same proportion dsm@al
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energy. Then the waves are more sensitive to the changes drptirameter. Whenis

small, according to Longuet-Higgins (1968), the waves hawstly kinetic energy.

0.8 ‘ 0.7 ;
e=0.1 — ¢=0.1
o.7r e=1 ] 06f e
0.6+ £=10 | —— =10
=100 051 ——— £=100 |
05f ~
T T 04f
5 o0af )
x§ 03l ,éD 0.3}
0.2} o.2r
0.1f 0.1
0 _ . . . 0 . . : .
0 20 40 60 80 0 20 40 60 80
colatitude (degrees) colatitude (degrees)
(@a =103 (b)a = 1071
1.5 T T T 15 T T
e=0.1 — =01
| e=1 | — e=1 /
1 £=10 1 ——— £=10 /

£=100

Uy/sinb

0 20 40 60
colatitude (degrees)

(c)a =103

80

£=100

Uy/sinb

0 20 40 60

colatitude (degrees)
d)a=10"

80

Figure 4.19: Numerical solution of the velocity for different values«ih the fast magnetic

Rossby mode fon = 2, m = 1 and N = 50.

The behaviour of the magnetic perturbations has no majongdggmwhen increases

from 1073 to 10~! but the amplitudes decrease considerably for stronger. fidédthe

frequencies decrease the magnetic field becomes strosgsnpan in figure 4.20. For

this moden = 2, the azimuthal component of the magnetic field is higher tinen

latitudinal component.
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Figure 4.20: Numerical solution of the magnetic field for different vaduef ¢ in the fast

magnetic Rossby mode far= 2, m = 1 andN = 50.

Figure 4.21 shows the scaled height and two important fact§éakt magnetic Rossby

waves are clear:

e There is equatorial trapping wherns large andv has a moderate value 0.1.

e The height amplitude is very small compared with the velesiind decreases

considerably when or « increase.
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Figure 4.21: Numerical solution for the scaled heightor increasing: (0.1 and100) in the

fast magnetic Rossby mode for= 2, m = 1 and N = 50.

Table 4.9 is an example of the first fast made: 2, whenm = 2. These waves have more
nodes in longitude. In addition, whenis small solutions correspond to the Associated
Legendre polynomials. These eigenvalues are always rbalvalues for large: can be

predicted by the asymptotic theory for = 2. The waves for large: are polar trapped.
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Table 4.9: Eigenvalues fast magnetic Rossby modes for different gabfiec ande, n = 2

N = 50 andm = 2: waves travelling westward.

a 103 10—2 10-1 1 10! 102 103
e=0.01 -0.33331 -0.3341 -0.39997 -1.80799 -15.9209 -63.6549 .4BBR22
e=0.1 -0.33299 -0.33378 -0.39971 -1.80657 -11.5124 -36.0576 1.9rD47

e=1 -0.32991  -0.33071 -0.39714 -1.79058 -6.81047 -20.5035 xR
e=10 -0.30562 -0.30648 -0.37713 -1.58640 -4.08217 -11.7911 xR
e=100 -0.22998 -0.23115 -0.31886 -1.26152 -2.55842 e kx

4.2.2 Slow Magnetic Rossby Waves

Solving the eigenvalue problem, we found numerically thet $mallest and positive
frequencies correspond to slow magnetic Rossby wavegllirayto the east. We select
the azimuthal wavenumbens = 1 andm = 2 to illustrate clearly the properties of slow
magnetic Rossby waves. The first mode corresponds=to2 in the formula (4.3), for

n = 1, the value of\ is equal to zero.

Then, the table 4.10 shows the numerical results for the alized frequency\, for

n = 2 andm = 1. For a weak magnetic field the eigenvalues do not change h&th t
rotation parametet, except whenv is 0.1 ande is large. Beforex = 0.5, the waves are
subalfvénic and aftei = 0.5, enter in a new regime: the modes grow and then become
negative to coalesce with the corresponding second fashetiagRossby mode and an
unstable mode branches off. Because the frequency chasgagn, there is a solution
for A = 0, corresponding to a stationary solution of the linear eiguat it is possible

that steady nonlinear solutions exist in the neighbourtaiadis point.
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Table 4.10: Eigenvalues for different values of ande, for N = 50 andm = 1. Slow

magnetic Rossby Mode = 2 ;. Waves travelling eastward.

a 1073 1072 1071 1 10t 102 103

e=0.01 4x10"% 0.00039904 0.033322 0.73319 4.7293 -0.482+92.7i  -0.49B:9
e=01 4x10"%  0.000399  0.033222 0.69392 -0.443+7.51  -0.494+97.7i  D+897.8i
e=1 4x10%  0.000399  0.032244  0.2865461  -0.482+9.3i -0.498 + 99.3i 500+ 999.1i

e=10 4x10°6 0.000397 0.024642  -0.437+0.6i  -0.494 +9.8i -0.499 + 99.810.500 + 999.3i
e=100 4x10°6 0.00038 0.004171 -0.480+0.8i -0.498+9.9i -0.500 + 99.9i .500+ 999.3i

In figure 4.22, the mode = 2 has been plotted for a weak field & 10~3) and moderate
field (@« = 1071). One striking feature of these waves is that they are nppad at the
equator. On the other hand, the panels 4.22(a) and (c) skaivthid rotation parameter
does not have effects on this mode when the magnetic field & .wéncreasing the
field, in panels 4.22(b) and (d), the rotation becomes ingmdyand wher increases the

amplitude of the velocity decreases.
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Figure 4.22: Numerical solution for the velocity for different values eofin the slow
magnetic Rossby mode far = 2, m = 1 and N = 50. Note that in the left panel, all

curves lie on top of each other.

Another major aspect of slow magnetic Rossby waves, is tmatamplitude of the
magnetic field is high with respect to the velocity, see figu&3. Due to the fact that the
magnetic field is proportional to the velocity and inverséwtine frequency, then if slow
magnetic Rossby waves have the shortest frequencies, theet@perturbations will be
the highest in amplitude. Also, we note in figure 4.23(b) af)dijat the amplitude of the

field for a moderate value of = 0.1 increases witla, unlike the velocity.
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Figure 4.23: Numerical solution for the magnetic field for different veduofe in the slow

magnetic Rossby mode far= 2, m = 1 andN = 50. All curves atl0~? lie on top of each

other.

In figure 4.24, the scaled height is shown, for= 2 slow magnetic Rossby waves.
The eigenfunctions corresponds to the Legendre polynsrarad are not trapped at the
equator. We note that for a weak field, in panels 4.24(a) anthécheight of the layer
is very small compared to the magnitude of the velocitiexgasingy to 0.1, the height

also increase in two orders of magnitude.
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Figure 4.24: Numerical solution for the scaled heightfor increasinge (0.01 and100) in

the slow magnetic Rossby mode for= 2, m = 1 and N = 50.

The next slow mode = 3 for m = 1 satisfies the relation (4.3) whenis small. In the
cases where > 0.5 the mode grows, after that becomes negative and then coldb

the magnetic fast Rossby mode= 3, as an unstable mode, see table 4.11.
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Table 4.11: Eigenvalues\ for different values otx ande, for N = 50 andm = 1. Slow

magnetic Rossby wave = 3 : Waves travelling eastward.

a 1073 1072 1071 1 10t 102 103

e=0.01 9.999 x 1076 9.883 x10~% 0.05867 0.8701 8.010 -0.4747+62.6i -0.4832+93.2i

e=0.1 9999 x 1076 9.882x10"% 0.05854 0.8518 2.342 -0.4832+93.2i  -0.4994+997.8i
e=1 9.999 x 1076 9.875 x 10~*  0.05733 0.6902 -0.4467+7.7i -0.4947 +97.9i  -0.4988 + 997.0
e=10 9.998 x 1076 9.809 x 10~%  0.04778 0.09633 -0.4832+9.3i  -0.4983+99.3i -0.4988 +%i97.

e=100 9.991 x 1076 9.217x 10~% 0.02041 -0.4408+0.63i -0.4947 +9.77i -0.4988+99.7i -B39997.6 i

Another example of slow magnetic Rossby waves is illustratdigure 4.25. If the fluid

isimmersed in a weak field, the wave is not affected by ratatihen the field increases

the rotation modify slightly the wave form and the frequen@he panels 4.25(b) and

(d), show that these waves undergo polar trappingfos 0.1 ande large. Also it is

evident that in the panels 4.26(b) and (d), the wave undsrgokar trapping foe large

anda = 0.1.
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Figure 4.25: Numerical solution for the velocity for different values efin the slow

magnetic Rossby mode for = 3, m = 1 and N = 50. All curves at10~2 lie on top
of each other.
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Figure 4.26: Numerical solution for the magnetic field for different veduofe in the slow

magnetic Rossby mode far= 3, m = 1 andN = 50. All curves atl0~3 lie on top of each
other.

Figure 4.27 reveals that slow magnetic Rossby waves arequaterially trapped, at

large or smalk or e. In contrast, the perturbation moves poleward whegs 0.1 ande is
large.
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Figure 4.27: Numerical solution for the scaled heigitfor increasinge (0.01 and100) in

the slow magnetic Rossby mode for= 3, m = 1 and N = 50.

This is certainly true in the case, when = 2, the eigenvalues are real and there is no
instability, as shown in table 4.12 for all the range or .. Another significant aspect of
the value of\ for slow magnetic Rossby waves is that the frequency is istialfvénic
regime|\| < ma. For smalla, the values are given by the formula (4.3) for= 2 and
m = 2, since\ is directly proportional ton, it is clear that the values of this table are
double that of the eigenvalues in table 4.10, where 2 andm = 1. The largen results
are proportional tev.

Figure 4.28 demonstrates that for slow magnetic Rossby svewva weak field the

rotation does not have a significant effect on the osciltetioBut for a moderate value
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Table 4.12: Eigenvalues for different values of ande, n = 2, andm = 2, an eastward

slow magnetic Rossby mode.

o 1073 1072 1071 1 10! 102 10°
e=0.01 7.9998 x 106 0.00079809 0.066664 1.4738 15.48 62.705  199.5
e=0.1 79998 x 107 0.00079808 0.066641 1.4649 10.677 35.073 111.97040
e=1 7.9998 x 1076  0.00079804 0.066408 1.3557 5.8606 19.508  ****
e=10  7.9998 x 106 0.00079764 0.064068 0.76454 3.098 10.758  ****
e=100 7.9994 x 1076 0.00079356 0.044464 0.31526 1.5634  **** Hhkk

of « = 0.1, the waves are slightly shifted to the poles wheis large. For the first
moden = 2, m = 2, the northward velocity is symmetric with respect to theaqu

conversely, the azimuthal velocity is antisymmetric.
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Figure 4.28: Numerical solution for different values efn the slow magnetic Rossby mode

forn =2, m = 2andN = 50. All curves atl0~? lie on top of each other.

Figure 4.29 for the scaled heightshows that forn = 2, there are more longitudinal

nodes and for a weak field the solutions are not trapped atihater, even thoughis

large. Then for moderate magnetic fields, the polar trappbetwpmes evident.
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Figure 4.29: Numerical solution for the scaled heightfor increasinge (0.01 and100) in

the slow magnetic Rossby mode for= 2, m = 2 and N = 50.

In table 4.13, the eigenvalues are tabulated for the sedomdmnsagnetic Rosshy wave,
n = 3, m = 2. The eigenvalues for small can be calculated with the formula (4.3). All
of these modes are real and for largand smalk, the value of\ are proportional tev.

All of these frequencies remain in the sufalvénic regime.
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Table 4.13: Eigenvalues for different values efande, n = 3, N = 50 andm = 2.Slow

magnetic Rossby modes: Waves travelling eastward.

o 1073 1072 1071 1 10! 10? 10°

e=0.01 2x107° 0.001977 0.117341 1.741586 16.5706 62.70506 199.5012
e=01 2x10"° 0.001976 0.117174 1.716517 10.67918 35.07343 112.3185
e=1 2x107° 0.001976 0.115525 1.463803 5.860625 19.5085 76.69158
e=10 2x107° 0.001967 0.101004 0.764634 3.097991 10.79252 71.02618
e=100 2x10"° 0.001884 0.048614 0.31526 1.563428 7.2357  70.42379

In fact, for the second mode = 3 andm = 2 the northward velocity is antisymmetric
and the azimuthal velocity is symmetric, see figure 4.30. il\gtne variation in the
rotation parameter does not affect the oscillation for aknfesd, but when the field is

moderate and increases, the solutions are more concentrated at highdeas.
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Figure 4.30: Numerical solution of the velocity for different valueseih the slow magnetic

Rossby mode fon = 3, m = 2 andN = 50. All curves at10~ lie on top of each other.

Figure 4.31 shows the effect of the rotation parameter owinees. For small, the
effect is imperceptible, but for large the wave is moved poleward. It is clear that here
the slow magnetic Rossby waves are not equatorially trappedare produced by the

effect of the magnetic field.
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Figure 4.31: Numerical solution for the scaled heightfor increasinge (0.01 and100) in

the slow magnetic Rossby mode for= 3, m = 2 and N = 50.

4.3 Anomalous Mode

In the numerical results a new mode was found in the presehtteeanagnetic field,
propagating westward. It is a very slow wave which we calldiaalous”, this is the first
slow magnetic Rossby mode. This mode collides with the fast magnetic Rossby
waven = 1 and the wave becomes unstable, see chapter 5. This instaigitiurs only
for m = 1. The normalized frequency is summarized in table 4.14 etlresnerical

results show the frequency of the anomalous mode increimssly withe anda®.
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Table 4.14: Eigenvalues for different values efande, m = 1, andn = 1, the anomalous

westward slow magnetic Rossby mode.

a 1073 1072 1071 1 10t 102 108

e =0.01 b —1.88x 10710 —2,00x 1077  —2.01 x 1073  -0.301+3.19i  -0.482 +92.7i -0.498+992.9i
e=0.1 —1.29 x 1077 —2.28 x 10710 —2.00 x 1076 -0.02053 -0.442+7.481  -0.494+97.73i  -0.499+997.8i
e=1 —7.47 x 1071 —2.34 x 1079 —2.00 x 107° -0.294+ 0.1i -0.482+93i  -0.498+99.3i  -0.500+999.1i
e =10 —1.39 x 10710 —1.997 x 1078  —1.97 x 107% -0.435+0.6i -0.494+9.8i  -0.499-99.8i  -0.500 - 999.9i
e =100 —4.41 x 10”1 —2.00 x 1077 -0.00172 -0.480 +0.8i -0.498+9.9i  -0.500+99.9i  -0.500 9.89

The velocity field shows a small amplitude that increaseh wisee figure 4.32. When
the magnetic field increases, frorh=2 to 10—, the wave amplitude increases too by at
least three orders of magnitude. The northward velocitymmetric but the azimuthal

velocity is antisymmetric. For anda small the solution correspondsidg = sin 6, this

is clearly shown in the panel 4.32(a).
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Figure 4.32: At the top, the northward velocity for the anomalous magniissby mode

with m = 1 and N = 50. The azimuthal velocity at the bottom, with different vadus e.

The scaled heighifie'/? is plotted in the figure 4.33, the amplitudes are small but it

increases witlw. In these plots, it is clear that this wave is not equatoriwdpped.
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Figure 4.33: Scaled heighie!/? for the anomalous magnetic Rossby mode with= 1

and N = 50, with different values ot.

For the anomalous mode the magnetic field behaves diffgréoth the slow magnetic
Rossby modesn( > 2), as we can see in figure 4.34. The northward component of the
field by has a shift ob0° with respect to the velocity, and the amplitudes are higher, so

whena increases. This anomalous mode is analysed in more detatiion 5.5 below.

4.4 Kelvin Waves

Generally, our numerical results provide three types ajiencies: gravity waves, fast
and slow magnetic Rossby waves. The high frequency grawatyew travelling to the
east has a mode that behaves differently wharcreases and becomes a Kelvin wave,
as the theory of Longuet-Higgins (1968) predicted. In theeoaf the fluid is immersed
in a weak field, i.eqe parameter is small, the eigenvalues for the Kelvin mode tsm a
be predicted by Longuet-Higgins (1968) theory and the fdan{8.42), the numerical

values obtained fok with the Matlab code are in table 4.15.
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Figure 4.34: At the top,Eg/sinH for the anomalous magnetic Rossby mode with= 1

andN = 50. The magnetic field,;/ sin ¢ at the bottom, with different values ef

Table 4.15: Numerical results for eigenvaluesthat correspond to the Kelvin mode for

N = 50 andm = 1. Waves travelling eastward.

! 1073 1072 107! 1 10! 10? 103

e =0.01 13.9 13.9 13.9 13.9012 15.2263 100.5000 ****
e=0.1 42452 4.2452 4.2453 4.2649 10.4999 100.0500 ****
e=1 1.2307 1.2307 1.2323 1.4782 10.0050 o K
e=10  0.34457 0.34468 0.35618 1.0496 10.0050 RRE ol
e =100 0.10263 0.10309 0.14257 1.005 Fwk ol ol
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Whene is large the waves are trapped at the equator and the Nodhwsbocity becomes
zero, as shown in figure 4.3%, velocity is smaller compared with,. When we
increase the magnetic field, the waves are more trapped,geee #.36, the Northward
component of the magnetic field becomes zero.

The eigenvaluea tends toma, whena ande are large.

12
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8 L
)
£ 6
&
S 4t
'3
ol
0
-0.01 : : : ‘ - ‘ ‘ ‘ ‘
20 40 60 80 0 20 40 60 80
colatitude (degrees) colatitude (degrees)
(a) Northward velocity foe = 10 (b) Northward velocity for = 100
1.4 2.5
10 a=0.01 ] a=0.01
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<> 15
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0
-0.2 : : : ‘ -05 : : : ‘
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(c) Azimuthal velocity fore = 10 (d) Azimuthal velocity fore = 100

Figure 4.35: Numerical calculation of the northward and azimuthal vitles for different

values ofa for the Magneto Kelvin Mode withn = 1 and N = 50.
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n A0.34457 a:0.001 ande: 10 n A 0.10263 a:0.001 and &: 100

(@a =103 (b) v = 1073

n A 1.0496 a:1 ande: 10 n A1.005 a:1 ande€: 100

0.02

0.01

o

-0.01

-0.02

Qa=1 da=1
Figure 4.36: Numerical solution for the scaled heigptvith o = 10~2 in (a) and (b). Then,

a = 1in (c) and (d), for magneto Kelvin mode travelling eastwaithw, = 1 and N = 50.

In the first columre = 10 ande = 100 for the second one.

There is a new mode travelling to the west that has a frequeney-ma which appears
for certain values of the magnetic parametersee table 4.16. This wave undergoes
equatorial trapping and the velociiy tends to zero when or ¢ are large, as shown in
figure 4.37, although, this Kelvin mode travelling westwerdot always present when
a > 100. It seems possible that it cannot be resolved by the numbabdes we include

in our numerical scheme. This mode is considered furtheedtien 5.6 below.
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Table 4.16: Numerical results for eigenvaluesthat correspond to the Kelvin mode for

N =50 andm = 1. Waves travelling westward.

a 1 10" 102
e=001  *  _153966* -100.5000
e=01  *k 105013 ek
e=1  -1.6888  -10.050
e=10  -1.0516  -10.0050 e
e=100 -1.0050

Values marked with ** correspond to the First mode£ 1) of MIG waves travelling

westward.
0.4 2
e=1
0.3
> )
S 0.2 e=1 S
% €=10 %
S o1 £=100 3
0
-0.1 ‘ ‘ : ‘ -0.5 : ‘ ‘ ‘
0 20 40 60 80 0 20 40 60 80
colatitude (degrees) colatitude (degrees)
(a) Northward velocity (b) Azimuthal velocity

Figure 4.37: Numerical solution for the velocity field with different wads ofe for the

Magneto Kelvin Mode travelling to the west with= 1, m = 1 and N = 50.
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4.5 Summary

This chapter has reviewed the key aspects of the MHD wavegh#ishallow water
system and the main results are summarized here. The aadlgtocedures and the
asymptotic results for them are described in the next chapte

As previously stated, MIG waves are always stable and tlygiénecies are superalfvénic,
the waves are equatorially trapped foror ¢ large. There are two exceptional Kelvin

modes which are equatorially trapped also, and their masiatmost azimuthal.

The magnetic Rossby waves for = 1, becomes unstable after = 0.5. The fast
modes are equatorially trapped fermoderate and large values @f On the contrary,
slow magnetic Rossby modes are not equatorially trappedséd’modes always remain
subalfvénic. A new anomalous slow mode travelling to thetigpresent. lin # 1 the
magnetic Rossby waves are stable. For largad« their frequencies are subalfvénic

and undergo polar trapping.
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Chapter 5

Magnetohydrodynamics: Analytical

Approach

In this chapter, we derive analytical expressions for theitems valid in certain
asymptotic regions of the parameter space, based on obises/af the numerical results
of chapter 4 to determine the behaviour and the values ofrdugiéncies for each set of
waves. In general these results are our original contobut the solution of the problem.
We start from the ordinary differential equation formula6&) for iy, derived in chapter

2,i.e.

d21~L9 2m2 dﬂe
1 — 2 S0 A2 — m2a2
(1=#) dp? * (A2 —m2a2)e(l — pu?) — mQ]M dp i {6( ma’)
~mA+2ma®)  e(A+2ma?)Pp? om? 2em(A\ + 2ma?)u? }ﬂ 0
¢ —wa?) (v ma?) (1) [0 w1 ) )

Based on observations from our numerical results, destiibthe previous chapter, we
derive some asymptotic theories that can explain the betaef the waves in the limits

when the parameters are large or small.
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5.1 Asymptotic Theory for Magneto-Inertial Gravity
Waves and Fast Magnetic Rossby Waves when? >>

1

The magneto-inertial gravity waves are trapped at the eguwethenc is large for all
values of the magnetic parameterand the fast magnetic Rossby waves are equatorially
trapped wherr is large ando has a moderate value aroufid. This behaviour has
been pointed out for hydrodynamic solutions by many autfidegsuno, 1966, Longuet-
Higgins, 1968). In general terms, equatorially trappedesamplies that the solution is
confined to a region where = cosf is small. Sinceu is small anck is large the factor
[e(A2—m?a?)(1—pu?)—m?] tends to~ (A2 —m?a?). Then the equation (2.64) becomes:

d?ig ) 5 9 m(A+2ma?)) . e(A+2ma?)? .

1/4
We introduce a scaling = % [%] i1, and define a scale factor

o \/5{60‘ + 2ma?)?

()\2 _ m2a2)

Since the waves are equatorially trappdide factor scale must be > 1 for the

1/4
} SO L= Sp.

asymptotic theory to be valid, if this condition is not sh#id the solution is discarded.

For this scaling, the differential operator must be

d _\/5{6()\%—27%042)2}1/4 d

dp L2 —m2a?) | di
and the rescaled equation becomes

iy 1{%}”2{@2_7#@2)6—%} L2ty =0. (52)

dp2 2| e(A 4 2ma?)? (A2 —m2a?) Ho— gt =

This equation corresponds to the standard Parabolic Gydimdfferential equation,

where

1[ (A2 = m2a?) V2 m(X +2ma®)\ 1
3 [—} {()\2 — mQOzZ)E - m} =V+ B% (5.3)
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forv = 0,1, 2.... The solutions ofi, for this differential equation are given 1y, (/) and
D_,_1(e’™/?), whereD, (j1) is the parabolic cylinder function, defined by Abramowitz

and Stegun (1964). THR_,_, (f1¢'™/?) solution goes to infinity at largé and so must be

discarded. The first solutions @&f, () are, forv = 0,

~ _1.2,2
Uy = e 151,

Whenv = 1, the solution will be
Ug = Spe ,
and forv = 2, the function must be
fg = (522 — 1)e 15

The asymptotic solutions far = 0 are plotted in the figure 5.1. For high values.cnd

e the eigenfunctions become trapped at the equator.
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Figure 5.1: Asymptotic even solutions for equation (5.1) for differeatues ofo, forv = 0

with m = 1. The first panel corresponds &= 10, anda = 100 for the second one.

The eigenvalues calculated with the numerical solution aimula 5.3 agree with

the numerical calculations made previously in chapter 4. elthe eigenfunctions
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are equatorially trapped, hence the factor scale musnbeh greater than 1. The
eigenfunctions in figure 5.1 describe perfectly the equatgrtrapped behaviour, for
greater tha.01 whena = 10. In order to calculate these eigenfunctions, the trunnatio
N must be very large. For exampledf= 10 ande = 100, the scale factor is- 38.8.
Whena = 100 ande = 100 the factor will be~ 178.1. This means that we need a
truncation numberN, which is 5 times larger than that whenis 10 in order to resolve
the solutions. Our code with the method of the eigenvaludglatiab is not able to
compute this because the matrices are too large, but atdange the asymptotic theory

is very accurate.

5.1.1 Dispersion relation and eigenvalues

The dispersion relation of the waves giveas a function ot, m and«, which are given

parameters in our case. It can be found that expressionda@3)e written as
€A —m2a®)? — m(A 4 2ma?) = (2v + 1)(A + 2ma?) (N2 — m2a?) V22, (5.4)

This expression must have~ +ma, as is shown in the numerical results, in the limit
whenea? > 1.

Let A = § + ma, andd < ma. In this approximation(\* — m?a?) = (A — ma)(\ +
ma) = 0(J + 2ma) ~ 2mad.

Sinced <« ma, to leading ordefa > 1), equation (5.4) becomes

82— (2u+1) <i> 1/251/2 1o (5.5)
2me 2¢
Neglecting the last term, becausss large, we have
1/2
82— (2u+1) (2%6) 512 = 0. (5.6)

Therefore, the approximate solution fbrs

1/3
§= (20 +1)/3 (i> . (5.7)

2me
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These are a sequence of symmetric and antisymmetric swutidath respect to the
equator. The dispersion relation for largbecomes

1/3
A= (2v + 1) (i) + ma. (5.8)

2me
The solutions for waves travelling westward in this appnoiion must be the same as
for eastward waves but with an opposite sign by taking —§ — ma.

In order to obtain more accurate results for the eigenvaigsthe formula (5.8), we

have to improve our first order approximation by going to leigbrder.

Second order approximation for the solutions of equation(5.3) MIG waves

travelling eastward

Initially, we arrange equation (5.3), to be solved anagiticfor the case of large and/or

largee

m(\ + 2ma?)

2 2 2\1/2) (y2 2 2
(A2 —m2a?)Y {()\ —m-a‘)e — 02 = ma?)

} = (2v 4 1)e2 (A 4+ 2ma?). (5.9)

Substitute\ = ma + 6, for eastward propagating waves, whéie very small compared
with ma, motivated by the numerical results in chapter 4. The fadb@come
2 2 2 0 2 2 1 0
A —mia ~2ma5<1+—), and A+ 2ma” ~ 2ma <1+—+—>.
2mao 200 2ma?

After a sequence of algebraic steps, the equation (5.93 tota

30 1 1 § ) (2v + 1)al/? 1 )
Hl+—— )| —— (14— 1— = V24— .
0 ( +4ma) 26( +2a+2ma2)< 4ma) (2me)1/2 0 +2a+2ma2

Retaining the orde®(1) terms of the expression (5.10), the second term and terms of

orderO(a~1) are neglected. Hence, to first ordewin- §,, we have

63 _ (21/ + 1)0(1/261/2

i (5.11)
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In the first order approximation, an expressionfas

(2]/ + 1)3/2a1/3

% = (2me)1/3

(5.12)

and so the term represents the deviation from the Alfvén speed whicheases witla
and decreases with This is also the formula (5.7) obtained previously.
In a second order approximation féy we add a smaller amount and neglect terms

with O(a™2),
) 1

0 =09+ 01 and Sme? o

Substituting) = dy + ¢, andé? = 63 (1 + %) into the equation (5.10), we obtain
251 350 51 1 1 50 61
Sl1+=—)|1 T+ =) —=(1+=— )1 1+ —
0< +50>[ +4ma< +50)} 26( +2a>[ +4ma( +50)]

1. L o1
_50<1+2a 15 ) (5.13)

Neglecting the term&® (e *a™'), O(5,60a ") andO(5,55a~") or similar higher orders,

equation (5.13) reduces to

365 3 1 6
Solving this equation fof;,
1 do 5
h=—+—— : 5.15
"7 3ehy 3 2ma (5-19)
substitutingj, into the equation (5.15), the expression becomes
2 1/3 2 1 2/3 2 1 4/3
5= 2 povt P (s l) (5.16)

3(2v 4 1)2/3e2/3a1/3  3(2me) /3023 2mal/3(2me)?/3
When ¢ and o are large, the dispersion relation for magneto-inertiavdgy waves

propagating to the east is

(2m)'/3 3(2v +1)2 (2v +1)%/3
2w+ 128l 4m? ] 3(2me)/3a2/3”
(5.17)

2me

1/3
A = ma+(2v+1)%3 <i) +3(
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which is accurate t@(a~%3). The value of) is calculated with the formula (5.17) for
m = 1 andv = 0 reported in the table 5.1; the results are in agreement iathamerical
results of table 4.3 of chapter éxcept for the first value in the first row, because this

solution is not equatorially trapped and does not satisfyctinditionea? >> 1.

Table 5.1: Calculation ofA with the formula (5.17) for = 0 andm = 1.

a 10 102 10°

e=001 19.2515 117.6441 1037.1
e=0.1 14.0330 108.0685 1017.2
e=1 11.8157 103.7189 1008.0
e=10 10.8307 101.7205 1003.7
e =100 10.3829 100.7974 1001.7

Second order approximation for the solutions of equation 8: MIG waves travelling

westward

We follow the same mathematical steps as in the previousosecEquation (5.3) is
solved analytically foea? > 1, when\ = —ma — §, whered is very small compared
to ma. This behaviour is also observed in westward propagating Maves, in chapter

4. Hence, the factors are

)\2—m2a2~2ma5<1+%>, and )\+2ma2~2ma2<1—i— 0 )

Substituting the expressions in the equation (5.9), weiobta
30 1 1 4] ) (2v + 1)at/? 1 )
2 I T E T _ _ 24+
0 <1+4ma) 2¢ (1 20 2ma2) (1 4ma) (2me)/? o 200 2ma? )’
(5.18)

The first order approximation neglects the second term anastef order® (o) in the

expression (5.18). Therefore, to first ordepin J,, we have the same expression as for
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eastward propagating MIG waves

2 (21/ -+ 1)0{1/2 51/2

The deviation from the Alfvén speedl, in the first order approximation is again

(2v 4 1)%2a1/3

% = (2me)1/3

(5.20)

Now, a second order approximation fbis developed here, we add a smaller amant
and neglect terms witt (a~?),

) 1
0=00+0 d —<—.
0o+ 01 an Sy < %0

The second order equation for= &, + ¢; andé? = &2 (1 + %) turns the equation
(5.18) into

20 30, 30 1 1 0, o 1 o
2 201 0 L D T ¥ ET L B S Y U 01
% <1+ do ) l1+4ma+4ma] 2e (1 2a) [1 dmo 4ma} % <1 2a) <1+250)'

(5.21)

The termsO(e'a™'), O(6160a™") and O(§,;55a~1) or similar higher orders will be

neglected here and the equation (5.21) reduces to

368 3 1 5
—0p0] — — = ——. 5.22
dma + 2707 9¢ 2a ( )
Consequently, the expression fgris
1 do 52
= —0 — 2 _0 5.23
! 3¢y  3a 2ma ( )
Substitutingy, into the equation (5.23), the expression becomes
2 1/3 9 1 2/3 ) 1 4/3
(2m) @ @t (5.2

1= 3(2v 4 1)2/3e2/3a1/3  3(2me)l/3a2/3  (2m)5/2e2/3a1/3
In the limit of largee and«, the MIG waves are equatorially trapped and the dispersion

relation for the westward Magneto-inertial gravity waves i

2u 4 1)2/3¢2/3a1/3 4m? 3(2me) /323’
(5.25)

a )1/3 (2m)"/? [ 320 +1)%7 . (v +1)*°
2me 3( a

A= —ma—(21/+1)2/3(
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which is the analogous to the formula (5.17) for waves pragiag eastward except that
for the westward waves the last term is also positive, whiglegya difference in the
values between eastward and westward frequencies.

Table 5.2 shows a comparison between the results of the far(®R25) and the
numerical calculations in table 4.4 in chapter 4. The rgsait accurate and provide
a good asymptotic formula when the code is not able to caketifee eigenvaluegxcept
for the first value in the first row which does not satisfy thedition o> > 1 and the

solution is not equatorially trapped.

Table 5.2: Calculation of\ with the formula (5.25) for = 0 andm = 1.

a 10 102 103

=001 -18.7224 -117.5301 -1037.1
e=0.1 -13.7874 -108.0155 -1017.1
e=1 -11.7017 -103.6944 -1007.9
e=10 -10.7777 -101.7091 -1003.7
e =100 -10.3584 -100.7921 -1001.7

Second order approximation for the solutions of equation 3: Fast magnetic Rossby

waves travelling westward.

The fast magnetic Rossby waves tend to be confined at theagdoatargee and also
moderate values af, as demonstrated by the numerical results in chapter 4. dhey
of « for equatorial trapping are between and0.5. After o = 0.5, the frequency of the
wave becomes subalfvénic and complex at certain poinigassised in the next chapter).
In the regimen < 0.5, A remains superalfvénic and| > ma, except whenv is near
0.5, this behaviour will be discussed later in section 5.2. 8jiee fast magnetic Rossby

waves have these features, the fa¢tdr— m?2a?) is always positive aneh(\ + 2ma?)
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is always negative. Hence

m(\ + 2ma?
()\2 — m2042)€ < —W. (526)
Then, the equation (5.3) reduces to
1] (A2 = m2a?) 12 m(\ + 2ma?) 1
- = —. 27
2 L()\ + 2ma2)2} (A2 — m2a?) v 2 (.27)
Simplifying the equation, the result is
2
2 2 2 m
_ S — 2
A —mia G+ 1) (5.28)

The quadratic (5.28) has two roots, only the negative roadlisl, because the condition
(5.26) must be satisfied. The dispersion relation for fasgmetic Rossby waves is

therefore
m

- 2ea2v +1)%
Using the formula (5.29), we obtain reasonable values ofhene is large but the values

(5.29)

A= —mo

for e < 10 are inaccurate, see table 5.3. This discrepancy can beuaidi to the fact that
for e < 10 the waves are not equatorially trapped and this theory doeapply in this
case.

Table 5.3: Asymptotic solution for\ obtained with the equation (5.29) for= 1 and the

numerical calculation foiV = 50. In both casesy = 0.1 andm = 1.

Equation (5.29) \.um
e=1 -0.655555 -0.1886
e=10 -0.1555556 -0.1408
e =100 -0.1055556 -0.1054

Numerical solutions for equation 5.4

In order to solve equation (5.4) numerically, we square Isadles of this equation, and

obtain an eighth order equation, for solving with MATLAB, diing the roots of the
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polynomial. Then, the equation is
EN — AmPa?e\° — 2me)’ + [6mta’e — dm?a’e — (2u + 1)% ¢\
+[dm3a’e — 4(2v + 1)*mae]\3
+[m? — 4mPale® + 8miate + (2v + 1)*m*a’e(1 — 4a?)|\?
+[dmPa® — 2m°a’e + 4(2v + 1)*mia’te N
+[mBa®e® — d4m®ale + 4m*a* + 4(2v + 1)*m*a’e] = 0. (5.30)

In table 5.4 the positive root of the equation (5.30) is régabrthis is the second Magneto-
inertial gravity mode« = 2) for m = 1. We compare the results of this table for the
asymptotic theory with the eigenvalues obtained with theevalues code of Matlab, see
table 4.3, there is good agreement between this asymptatitian and the numerical
method. Although there is a difference in the valuea gfinderlined valuesihena <

0.1 ande < 1, this inconsistency may be due to that the scale factor sstlemn1, see

table 5.5, and also smaik? < 1 then this theory is not applicable in this regime.

Table 5.4: Eigenvalues\ for different values ol ande, as numerical results of solving

equation (5.30) for = 0 andm = 1. Asymptotic solution.

o) 1073 1072 1071 1 10 10? 103
e=0.01 5.3549 5.355 5.3637 6.0784 18.308 117.45 1037.1
e=01 2.6371 2.6372 2.6475 3.3806 13.896 108.05 1017.2
e=1 13247 13249 1.3381 2.102 11.799 103.72 1007.9
e=10 0.68056 0.68075 0.69917 1.5044 10.829 101.72 1003.7
e=100 0.35771 0.358 0.38501 1.2303 10.383 100.8 1001.7
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Table 5.5: Scale factor for different values @f ande, of the first numerical solution of

equation (5.30) for = 0 andm = 1.

o) 1073 1072 107! 1 10 102 103

e=0.01 0.44721 0.44722 0.44809 0.51911 1.6873 8.0814 38.166
e=0.1 0.79527 0.7953 0.79855 1.0265 3.7445 17.63 82.486
e=1 1.4142 1.4143 1.4267 2.1065 8.2243 38.226 177.98
e =10 2.5149 25154 25638 4.4406 17.914 82.612 383.71
e=100 4.4722 4.4743 4.6676 9.4946 38.813 178.24 826.94

Figure 5.2 shows the scale factor for different values ohtlagnetic parameter. In the

limit of o small the scale factor ig2¢!/* and fora large it is proportional tgea®)*/4.

10°

a=0.001
a=001
a=0.1

10 a=1
Va4

a=0.1
a=1
a=10
a=100

a=1000

Scale Factor
Scale Factor

1 1 10_1 i n n 1
! 10° 10° 107 10" 10° 10" 10° 10°
€

Figure 5.2: Plot of the scale factor of the first solution for differentues ofa, for v = 0

with m = 1. The first column corresponds to calculations dor= 0.1 to o« = 1000, the

second one shows the results for small values.of

There are 8 solutions for equation (5.30) but just 4 solgtiare valid. We take the

solutions whered = v + 1/2
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Three type of waves can be identified: MIG waves travellingfward and westward and
the fast magnetic Rossby wave travels to the west. Partigutile fast magnetic Rossby
mode will disappear when > 0.1, and our solutions reduce to two real roots, the table
5.6 illustrates this point clearly. Whengreater than 1, this is evident from the numerical

results (section 4.2) that magnetic Rossby waves experiemtfinement at the poles.

Table 5.6: Numerical solution of the eigenvalue@ssolving equation (5.30) when= 100

andm = 1.

o) 0.1 10
0.38501 10.383
v=20 -0.26206 -10.358
-0.15025
0.58571 10.768
v=1 -0.53412 -10.717
-0.10542

Table 5.7: Eigenvalues\ calculated with the method described in section 2.4 with 100,
m=1andN = 50.

o 0.1 10
0.4042 10.383
n=2 -0.2877 -10.358
-0.1020
0.5959 10.769
n=3 -0.5322 -10.717
-0.1054

In table 5.7 we compare the numerical solution of equatioB0)bwith the eigenvalues

obtained with our numerical method (section 2.4), the \alirecolor blue are fast
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magnetic Rossby modesThere is again agreement between this asymptotic solution

and the eigenvalues numerical method if the value of theedaator iss > 1.

5.2 Behaviour of Fast Magnetic Rossby Waves near =

0.5

As mentioned in chapter 4, there is a valuexdhat divides two different regimes where
magnetic Rossby modes change from stable to unstable loeina®o, the following is
a mathematical description of the solutions wher- 0.5. To determine the behaviour
whena is near0.5, we considery = 1/2 + & where|a| < 1, i.e. very close tax = 1/2
and\ = —m/2+ 6 when|d| < 1. We also assumei < 1 andes < 1. Then the factors

of the equation (2.64) become
A2 —m2a? ~ —m*a —mb + 0(8?),
A+ 2ma? ~ § + 2ma + O(&?),
(A —m*a?)e(l — p®) < m?.

Becausen is orderl, the differential equation (2.64) reduces to

42y dig [ (64 2ma) m2
1—p? — 22— + 3 — - + O(a) pty = 0. 5.31
This is the Associated Legendre differential equationhwilutions

g = P () with n(n+1)= M.
(0 +ma)

Hence,

_ma(n(n+1) —2]
n(n+1) —1]

Therefore, neatr = 0.5, the dispersion relation for fast magnetic Rossby waves is:

6= (5.32)

~m_ maln(n+1) —2]

A T T T D) =]

(5.33)
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Note that, ifn = 1, thend = 0. In particular this case is singular, we need to go to higher
order.
Let us now consider = 2 andm = 1 which illustrates the behaviour clearly, so

.4
§=——a.
5

Consequently, in the neighbourhoodof= 0.5, the dispersion relation for fast magnetic
Rossby waves is:
A=———(z—a). (5.34)

The numerical results fox are reported in the table 5.8.df= 0.498 the formula (5.34)
gives\ = —0.4984 and fora = 0.502 then\ = —0.5016. These values are independent
of e. The asymptotic formula (5.34) agrees well with the nunaresults, especially

whene is small, see table 5.8.

Table 5.8: Numerical results for eigenvaluéswith n = 2, m = 1 and N = 50.

o) 0.498 0.502
e=0.01 -0.4984001 -0.5016001
e=1 -0.4983995 -0.5015995
e =100 -0.4983422 -0.5015300

5.3 Asymptotic Theory for Stable Modes Trapped at the
Polem > 3
Let us now consider the behaviour of stable modes when theetiagparametery, is

large. The theory explains the limit case for the eigenwalued analytic solutions for

the eigenfunctions. Fast magnetic Rossby waves and slometiagrossby waves are
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expected to be unstable whan> 0.5 andm = 1. If m is different from1 the magnetic
Rossby modes are stable and the values of the eigenvaludiseaeidienfunctions can be
predicted for this problem far > 3. The casen = 2 is dealt with in section 5.4 below.
In general, the magnetic Rossby waves are the result of tmlbetween the Coriolis
force and the magnetic tension and have a magnetic origiey Thdergo polar trapping
for large« ande, and the waves become concentrated in a small region neaotés.
The eigenfunction for a fast magnetic Rossby wave & 3) illustrates the polar
trapping, in figure 5.3, waves are more trapped @sda increase. Heng and Spitkovsky
(2009) have described this feature for magnetostrophicesiodth their formulation

for shallow water model with a basic state for the magnetid fis a radial constant field.

Ug/sind

-0.5 ' :
0 20 40 60 80

colatitude (degrees)

Figure 5.3: Numerical calculation of northward velocity for differevlues of epsilon in

fast magnetic Rossby mode far= 10, m = 3 with N = 50.

As indicated previously whea is large the solutions are confined in a small gap at the

poles where:, = cos 6 tends tol, then a new scaled variable and its differential operators
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are defined by

" . d a d d? a? d? 2 2m.
PR T T aE e T T
Substituting in the general differential equation (2.62)the northward velocityiy we
consider each term to find its leading order in the large patarna. The differential
equation (2.64) has seven terms, here naifieds,...andT; respectivelyWe note from

the numerical solutions thatis O(«) for these trapped polar modes,

24 a ~ 024
Ty = (1 - p?) 5% ~ 22058 ~ O(a),

— 2m? ol
T = e o ~ O,

T3 = E()\Q — mZOCQ)a@ ~ O(a2)7

—m ma?) ~
Ty = G o ~ O(1),
€ mOl2 2,2
Ts = — (?;;Q_m%zzﬁl Ug ~ O(QQ)v

To = 251 ~ O(a),

me ma?)u? ~
Ir=- [(AQEmQ(Oi\;;ez(l—“lL)L_mz}ue ~ O(a).

TermsT3 andT5 of orderO(a?) are dominants. These terms cancel out at leading order
to get a valid solution, so singe¢ = 1 — 2L/ + ..., we obtain

e(\ + 2ma?)?
6()\2 _ m2a2) — (()\2 - m2a2)) 7

which reduces ta? — m?a? = +(\ +2ma?). Numerical results show that fast magnetic

(5.35)

Rossby waves are subalfvénic wheis large, so we must choose the minus sign to get

1 1
A= —§ﬂ: \/Z+m(m—2)a2. (5.36)
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Here\ ~ &/m(m — 2)a is the leading order part, and leads to the cancellatiorrofde
O(a?): T3 andTs.

The differential equation foiy have terms of orde®(«). The termsl;, and7), areO(1)
only, and so can be neglected. We need to rethink the tégnasd 75 to get theO(«)
part.

For eastward propagating waves let

A=k ++/m(m—2)a.

Then

a 0%
Ti ~ 2555 ~ O(a),

Ty ~ e(—2ma? + 2ka/m(m — 2) + k*a)ag ~ O(a?),

Ty =~ (2mea® + 2kear/m(m — 2) + 2ear/m(m — 2) — dmey,afi)ip ~ O(a?),

Ty ~ — 2225, ~ O(a),

2v1f

T7 ~ Mﬂg ~ O(Oé)

TiH

The termsD(a?) cancel as expected and ordlf«) terms remain and the equation (2.64)

becomes
2 (2K + 1 “9m  B-%
i + 1)e fn(m gl + 2Tl =0, (5.37)
dp? H .

As a result of this, we choose the value of the variaple= 1/v/8me, and it gives the

Whittaker differential equation

20 1_ (m=1)?
0;;29 L M}u} —0, (5.38)
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where s = (1 + 2k)/2 . In addition, the solutions are Whittaker functions

(Abramowitz and Stegun, 1964)
~ /a _B,.m m N m—1/~
dg(jt) = e 2 1% [eld (v + 50 1) + 2Ly (f1)] (5.39)

wherel/{ is the confluent hyper-geometric function of second kind Ansla generalized
Laguerre polynomial. The solutidd is singular ag: tends to zero, so we choose= 0.
So let

em—2) m

m
n=r—g =1+ e - 3.

Then we have a set of solutions trapped at the poles, thetbfent modes depending

on the poloidal wave number:.

L, (). (5.40)
Consequently, the dispersion relation for magnetic Rossiues trapped at the poles for
m > 3is

m 2 1

For instance, let = 0, £(0,m — 1, 1) = 1 andm = 3, the corresponding solution is
() = ea(1 — pr)zeVoeol=m), (5.42)

The solution tends to zero when = 1 at the poles and also vanishes at the equator

(n = 0) if « or e are large, as the theory requires.
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Table 5.9: Comparison of eigenvaluéscalculated with the formula (5.41) and the numerical

results form = 3 and N = 50.

a € )\cal )\num

0.1 23.5287 22.4811
10

100 17.0326 17.0414

0.1 179.4133 179.2968
100

100 172.9172 173.0246

0.1 1739.3 1738.4
1000

100 1731.8 1734.8

This solution is plotted in figure 5.4 for = 10 and different values of.

The theory works in the range where the scale factor for godgoping,1/(+/(8me)a)

is less thari. If the values ofx ande are large the polar trapping is very large, and the

fluid is strongly confined at the poles. This behaviour hasilbeproduced numerically in

chapter 4. Some eigenvaluefiave been calculated with the formula (5.41) for= 3,

as shown in table 5.9, the results agree with the numericéhode(n = 3, m = 3,

N = 50).
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700 T T T T
e=0.1
600 | g
— ¢=10
500y —— £=100 |
= 400} .
‘3
~
.S 300} 1
200 i
100 8
0 1 1 4
0 20 40 60 80
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Figure 5.4: Northward velocity for different values of epsilon in with= 10 andm = 3,

calculated using the formula (5.42)

For fast magnetic Rossby waves travelling westwards atlarghe dispersion relation
is

A=—ay/m(m—2)—k_.
If the same procedure is applied to the equation (2.64), waiokhe Whittaker equation

with a small difference with respect to the eastward waves

2% —1 —9 m _ m?
—meﬁfdg + {( )5 ﬂm(m )'71 42 = 4

a2y
dji2

Vg =0,  (5.43)

where the condition fok_ is

2

— =0,1,2,...
e(m—2) n )y S

1 m
k_:+§+(n+5)

The solutions will be a set of functions depending on the a#iial and poloidal wave
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numbers:m andk_ respectively. Then, the expression fois given by

)\:—a\/m(m—2)—(n+%),/ﬁ—%, (5.44)

so the magnitude of the frequency of the fast magnetic Rosslg is one greater than
the slow magnetic Rossby wave, although at latigthe form of the waves become
similar and also trapped at the poles.

From equation (5.44), we calculate the normalized frequentor o« = 10, 100 and
1000, with e = 0.1 and100. Accordingly, the results compare well with our numerical
results, as illustrated in table 5.10. We note that the iffee in\ between eastward

and westward magnetic Rossby waves,isee tables 5.9 and 5.10.

Table 5.10: Comparison of eigenvalues calculated with the formula (5.44) and the

numerical results fom = 3 and N = 50.

oY € Acal Anum
0.1 -24.5287 -23.2768
0 100 -18.0326 -18.0353
0.1 -180.4133 -180.2775
o 100 -173.9172 -174.0744
0.1 -1739.3 -1739.4
1000

100 -1732.8 -1735.8

The accuracy fon improves wheny ande are large, except for the last row, where we
suppose that the polar trapping is large and the code is fot@abompute the eigenvalues
when the truncation number i§ = 50. It is possible that at higlv the value could

improve but also we know the limitations of our numericalkcgétions.
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5.4 Asymptotic Theory for Stable Modes Trapped at the

Polem = 2

In the case of magnetic Rossby waves trapped at the poles for, the formula (5.41)
cannot reproduce the frequencies, because of the fagyan(m — 2). Anothernew

approximation is proposed here, motivated by the numenssallts,
A= Bal? + &, (5.45)

where andk are constants to be determined. The numerical results Hevensthat
these waves are confined at the poles whes large, therefore the same scalings used

for the previous sections are valid here
Y . d a d d? a? d? 9 2m.
—1-L — = — = 1—p?="n+
PERTRN T TG a4 T R E T
Substituting (5.45) and the scaling in the differential &ipn (2.64), every term of the

eqguation can be approximated as follows

Ty=(1—p?) 2% ~ 20,50 — O(a),

ou? wHap =
_ om? o ., 1 dig _
L = e P o ~ s di = (1),

Tz = €(A2 — m2a?)iy ~ (—dea? + BPea + 2Breat/?) iy = O(a?),

—-m ma?) ~ ~
Ty = 5255y ~ 20y = O(1),

Ty = —<Ob2mailit gy [dea® + B2ea — 8yieafi + 2(k + 1) Beal/iy = O(a?),

\2—m2a2)

_ —m? —2a~
Ts = izl ~ 551 = O(a),
_ 2me(A\+2ma?)p? ~ 2 ~
I7 = [(A2—m2a2)e(1_u2)_m2]u9 Wue = O(a).
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We neglect terms of orde?(1): T, and7,. The termsl andT are cancelled. Then,
the equation (2.64) becomes

a2y
dji2

BPen 4ne + (2k 4+ 1)71Be

+ { [i 1 ﬂa1/2

big =0, (5.46)

In order to eliminate the last term, we set= —1/2, and make the convenient choice
71 = 1/4€'/2. Now the differential equation is the Whittaker equatiof{amowitz and
Stegun, 1964), where

4(n+1)
2 _
g = el/2
So
d*1iy 1 (n+1)
- - iy = 0. 5.47
dﬂ2+{ v p Hig =0 (5.47)
There is a set of solutions corresponding to
ip = e~ 2L (). (5.48)

where! (/1) is the Generalized Laguerre function. For example, # 0 thenL} (1) =

1, therefore the lowest mode solution is

ip(p) = 4e'a(1 — p)e=2all=m),

1/2

This solution is confined at the pole because of the faetof’"“0~#)  which is
maximum at the poles and at the equator tends to zero.
In general, the dispersion relation for the polar trappedmetic Rossby waves for = 2
is

2[(n+1)a)¥? 1

o= — (5.49)

The frequency of the magnetic Rossby waves increasesandiiid decreases with as

shown in the following tables. The results of the formulad@.are in table 5.11 and
the numerical results for a truncation number/of= 50 are reported in table 5.12.
Comparing these values is clear that there is a good agredratreen the asymptotic

theory and the numerics, although the value\dér o = 10 ande = 0.01 in the table
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5.11 is not right, possibly because the mode here is not murftlg trapped.

Table 5.11: Eigenvalues calculated with the formula (5.49).

o) 10 100 1000
e=0.01 19.5000 62.7456 199.5000
e=0.1 10.7468 35.0656 111.9683
e=1 5.8246 19.5000 62.7456
e=10 3.0566 10.7468 35.0656
e=100 1.5000 5.8246 19.5000

The asymptotic theory provides reasonable results whenuherical method is limited

because the polar trapping of the functions.

Table 5.12: Numerical results for the lowest moade= 2, m = 2 and N = 50.

o 10 100 1000
e=0.01 1548 62.705 199.5
e=0.1 10.677 35.073 111.970
e=1 5.8606 19.508  ****

e =10 3.098 10.758  ****

e =100 1.5634 **** ok

5.4.1 Solutions near the poles

In order to find solutions near the poles the dispersion iogldior magnetic Rossby

modes can be approximated using the expressien fa'/? + k , for m = 2 and a
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new scaling
o Y2 -
S

Therefore

275 . - 279

/f:l—l;,u—i-v—i/f and 1—u2:l22,u.
« « «
. . . o? d d? _ o* &2

Then, the differential operators can be expresse%as. — S andm = Sram Also

the factor(\? — m?a?)e(1 — p?) —m? — —8ev, [/1 + ﬁ] . Substituting this scaling into

equation (2.64), the terms will reduce to

m> ot a i
T2 = [(AQ—a2m22)e(1—u2)_m2]Ma—/f ~ % [ 1 dag __ O(a2),

Tye(N? — &*m?)ig ~ —4ea?ty = O(a?),

Ty = 520 iy ~ 20 = O(1),
Ty = —%ﬂg ~ dea’tiy = O(a?),
To = 251l ~ —22iip = O(a?),
Tr = e o ~ — 2l = O(0?)

e

When the terms balance @(«?), the equation is

d?i 1 1 di 1 1
i df“f o % — Ziig + i = 0. (5.50)
fi 7 [“*R] TR [“*2672]

This equation has a very simple general solution. Wedet = 1, i.e, choose, = 1/2e.

Therefore
d*ty 1 dug 1 1
—— + ——— — —Up + ——up = 0. 5.51
Mo T U mdn R ) (5:51)
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One valid solution for the previous equationiis = i, then near the poles, the velocity
can be expressed by
g = 2ea®(1 — pu). (5.52)

whenpu — 1 the velocity tends to zero.

5.5 Asymptotic Theory for the Anomalous Mode in the

Small o« Regime

In the numerical results there is also a slow anomalous nraselling to the west, that
appears in the presence of the magnetic field. This modeleslith the first magnetic
Rossby mode and the wave becomes unstable. This phenomenas only form = 1
and for the magnetic Rossby modes. This mode has been foundrimally and the
normalized frequency is summarized in table 4.14. We camthat the wave is very slow
in the smallr regime and the frequencies are very small. Therefore, iadation (2.64)
eis O(1), a?is small,m = 1 andX = Aea*. The factor](A\? — m2a?)e(1 — p2) — m?| ~
—[1 4+ a%¢(1 — p?)], and using geometric series, and the fact ffak o? the following

fraction reduces to

1

08— mtad)e(i = ) —m] T et =]

With these approximations the equation (2.64) for the neatid velocity becomes

diig
1 — 1) —= —2[1 — o®e(1 — p?)|jp—r
( “)d;ﬂ [1—a”e( u)]uduﬂL

A
{E + 2 + dea’1? —

A=)~ o’ + dea®1*[1 — a?e(1 — p?)]}ig = 0. (5.53)
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Taking A = ea?, the equation (5.53) can be written as

d’a du
2 0 2 2 0
(1 —p7) 42 —2[l—afe(l—p )]Md—+
R 1
{Aea® + 2 + 8ea®p? — a3 e — 4’y (1 — p*) pag = 0. (5.54)

Rearranging the terms of the differential equation, we have

d21~L9 dag ﬂ@
1— 12 —2U— + 2Up — ———=
( mdu2 Wi T T e

0 .
+ea?{2u(1 — mai: + A+ 802 — 1 — dea2(1 — 2)]iig} = 0. (5.55)
We propose a sinusoidal solution for this differential eopra
g = (1 — p®)V% + eay. (5.56)

Substituting the solution into the equation (5.55) andrtgkhe solutions of orde? (ea?)

d*y dy Y
201 —uH—2L — 9,2
ea{( ) 5 Md ( 2

+ 2y}

+ ea?{2u(1 — “2)% + [5\ +8u® —1]ag} = 0. (5.57)

We takedy = (1 — p*)"/? and G2 = e to maintain the orde©(ea?) of the

equation.

d*y dy y :
1— =2 — 9,27 _ 2 = —[\ 2 _ 1)1 — u2)Y?. (558
( M)dﬂ2 My T T A+ 6p? — 1](1 — )% (5.58)

We try a power ofin 6 as solution for the differential equation

dy d*y (2p* = 1)
_ . 2\3/2 _ _ 212 =
y= A1l —pu)’”, 3Ap(1 — p) "/, du? 3A(1 — 2)2

dp
Substituting this expression into equation (5.58), we fimdlgebraic equation for powers

of p

—A(L =2+ (9A+6) 21— )+ (A= A—1)(1 —p2) = 0. (5.59)
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We obtainA = —3/5, A = —1/5. Hence, the frequency of the anomalous mode will be

A= ——ca’.

(5.60)

As has been shown, the wave has a magnetic origin and is io#dedoy the rotation.
Undeniably, the formula (5.60) agrees with the resultslolietd.14, and also the solution
for the velocity agrees with figure 4.32(a) and (b). Findlg solution for the Northward
velocity is

o = (1= )2 = Sea’(1 = ) (5.61)

This demonstrates that the wave form is mostly sinusoida.nétice that for smald,
the wave form will not be affected by variations in the magnéeld or the rotation,

because the second term will be small.

5.6 Kelvin Waves

In this section, we analyse the effect of the magnetic fieltherKelvin waves. We obtain
an analytical formulation for the dispersion relation afsbahe eigenfunctions. For the
non-magnetic case, Longuet-Higgins has studied the Kelaves. He found just one
mode that travels to the east that corresponds to this kimdaflation. He established

the features of this mode as follows:

e For small parametet, the Kelvin mode correspond to the first gravity wave

travelling eastwardi{ — m = 0), with dispersion relation

) — n(n—l—l).

€

e Whene is large, the waves are equatorially trapped and the digmerslation
changes to

m
)\—%.
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e The northward velocityi, is small compared with the other quantities for lakge

When a toroidal magnetic field is introduced in the system whaves become modified
by the magnetic field. Then, these wave becomes trapped agtragor for largev or e,

as shown in the numerical solutions for the eigenfuncti¢gitem the numerical results,
we note that increasingor « the northward velocity goes to zero faster, as a property of
this magneto-Kelvin mode. The fluid reduces the movemenhtazamuthal flow. The

original set of equations, wher = 0 (Holton and Lindzen, 1968), is reduced to

A+ 2ma®) piig + A1 — p? 9 =0, (5.62a)
¢ En

(A2 —m*a?)ty, — Amij = 0, (5.62b)

Ae(1 — p?)f) — mii, = 0. (5.62¢)

Taking the derivative of equation (5.62b) and rearrangingsy

dii

Im—— = (A\? —m?a?) -

(5.63)

Substituting\mon /0 into equation (5.62a), we obtain a first order differentgalation:

dag, — m(\+ 2ma?)

2 —
(1 —H ) d,u + ()\2 _ m2a2) Hugy = 07 (564)

The analytic solution of this differential equation, canda¢culated by direct integration,
then, the expression will be
iy = Cy(1— )", (5.65)

where( is a constant associated with the normalization and the pgiseelated to the

frequency, and it is expected to be positive in order to olfiaite solutions

m(\ + 2ma?)

R (5.66)

q:

The exponential function for near zero is

2 .133

z xXr
e —1+1’+§+§—|— .....
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Therefore, at the equatpr= cos # tends to zero, the polynomial functian- p? + ... ~

e~+*. As a consequence of this, the solution (5.65) can be exguiess
iy = Cre~ /2, (5.67)

Then a formula for; can be found as

A2 — m2a2
Cl%e_‘“ﬂ/z. (5.68)

i =
Substituting these expressions foandi,, into the equation (5.62c), and taking the limit,
when1 — ;2 ~ 1 for equatorially trapped waves, a dispersion relation istb

2
2 2 M

N —m2a? = — (5.69)

Then, we may define a dispersion relation for Magneto-Kelanes
1
A= xmy/ -+ a. (5.70)
€

As shown in the last equation,df = 0 the dispersion relation will coincide with Longuet-

Higgins formula for Kelvin waves. Substitutinginto the expression for the powegrwe

1
q:e<2a2i1/—+a2>.
€

Longuet-Higgins neglected the negative answerXobut in this case we can consider

will have

the negative answer wheis greater than zero, which is possible for values.af 0.5
for large epsilon. For small values ofhis wave exists forr > 1/1/2¢'/4, approximately.
Then, fora or € very large,q will be very large and the function will be more trapped.
Using this asymptotic theory we can predict the eigenvafoeshe Magneto-Kelvin
waves, from equation (5.70). The results are summarizeabie t5.13. The results are

very accurate compared with our numerical results repontéable 4.15.



150 Chapter 5. Magnetohydrodynamics: Analytical Approach

Table 5.13: Eigenvalues calculated with the formula (5.69) from thengstptic theory for
large o, the values with the star* were calculated with the formul&@nguet-Higgins for

gravity waves for smalt = 0.01 ande = 0.1.

a 1073 1072 101 1 10! 102 10°

e=0.01 14.1421* 14.1421* 14.1421* 14.1421* 14.1421 100.49876 (106500
e=0.1 4.4721* 4.4721* 4.4721* 4.4721* 10.4881 100.0500 1000005
e=1 1.0000  1.0000  1.0050  1.4142 10.0499 100.0050 1000.0005
e=10 0.3162  0.3164  0.3317  1.0488 10.0050 100.0005 1000.0000
e=100 0.1000  0.1005  0.1414  1.0050 10.0005 100.0000 1000.0000

The westward Kelvin mode is produced by the magnetic fiela digenfunctions for the
northward velocity also tend to zero wheror e grow. In table 5.14 the values afhave
been computed with the formula (5.70). The spaces with tebethline were discarded
because they correspond to solutionsforegative. The starred values are associated to
high¢ > 1900 and the numerical solution could no longer computed withctbae due

to the high confinement at the equator, as expected.

Table 5.14: Propagating westward Kelvin wave. Eigenvallesalculated with the formula

(5.70) form = 1.

e} 1 10 102
e =0.01 --- -14.1421  -100.4988
e=0.1 --- -10.4881 -100.0500*

e=1 -1.4142 -10.0499 -100.0050*
e=10 -1.0488 -10.0050* -100.0005*
e =100 -1.0050 -10.0005* -100.0000*
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5.7 Summary

In this chapter we found asymptotic expressions for theeckfiit kinds of waves when
ea® > 1. As discussed MIG waves solutions satisfy the parabolimdegr differential
equation with solutions

~2
i = e~ T H, (1),

V2

where H, are the Hermite polynomials. These functions represeraitegally trapped

waves, with frequencies

i) 1/3 (2m)1/3 ) 3(2y—|—1)2] (2y—|—1)2/3
3( 3

— 2/3 —
A = tmat(2v+1) < % 1 1)2BeBai/s A2 (2me)1/3a2/3

2me

With regard to the Kelvin mode, it takes the form of an expdiafunction
Uy = 6_%“2,

where q is a positive number, for waves concentrated at thateqg with relation
dispersion

A=+m % + a2
There is a possibility that a Kelvin mode propagating westi@an exist for certain
values ofe anda.
Similarly fast magnetic Rossby waves satisfy the paralmylinder differential equation
as MIG waves but when the parametehas a moderate value where these waves are
trapped at the equator, with frequencies

m

A= —ma— —
ma 2ea(2v +1)2

In the case wheny is large andm = 2, magnetic Rossby waves (fast and slow)

eigenfunctions correspond to the Whittaker functions

g = e 5 ALk (1),
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whereL”,~! are the Generalized Laguerre polynomials.
Although if « is large andn > 3, the solutions for magnetic Rossby waves (fast and

slow) are the Whittaker functions

fig = e~ 2 2 LM ().

In addition, an asymptotic theory was developed in the casmall o for the anomalous
slow magnetic Rossby wave traveling to the west with fregyen = —0.2¢ca*, with

sinusoidal solutions equal to

A mathematical description for unstable magnetic Rossbyewgwhenm = 1) is

provided in the next chapter.
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Chapter 6

Instabilities

The most interesting aspect of the magnetic Rossby wavée imstability that occurs
whenm = 1. Unlike MIG and Kelvin waves, these magnetic Rossby modesine

unstable due to the toroidal magnetic field intensity. Is tthapter, the main numerical
results for instability of magnetic Rossby waves are preskehere, in section 6.1. Then,
we propose a theory for the behaviour of unstable modes wieemagnetic parameter,
«, is large. The theory explains the limit case for the eigkres and finds analytic

solutions for the eigenfunctions and the dispersion m@tati

6.1 Numerical Results for Instabilities

Magnetic Rossby waves evolve into growing modes in the piasef the magnetic field.
Fora < 0.5, fast and slow frequencies are real and have some propetties have been
mentioned in previous chaptetbhese include that fast magnetic Rossby waves undergo
equatorial trappingHere the fast magnetic Rossby mode is in the superalfuegione

|A| > ma.

For o > 0.5, each fast magnetic Rossby frequency becomes subalfvématesces

with its counterpart slow Rossby mode and a complex modecheznoff. Figure 6.1
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illustrates this behaviour for the fast magnetic Rossby enoe- 2. Whena = 0.1 the
normalized frequency is real and the wave is trapped at thateq For higher values of
«, the mode is complex and it is polar trapped,det 100.

This instability is driven by the magnetic field, but it recpga > 0.5 andm = 1. In

a=0.1 A=-0.1408
o=1 A=-0.437-0.6i
0=10 A=-0.494-9.76i

Z ]
i Il j\/% -

0 50 100 150 0 50 100 150
colatitude (degrees) colatitude (degrees)

a=0.1 A=-0.1408
a=1 A=-0.437-0.6i 4
a=10 A=-0.494-9.76i

IN

N

R(ag)/sind
R(uy)/sind

Figure 6.1: Real part of the northward velocity and azimuthal velociyrhagnetic Rossby
mode withm = 1, ¢ = 100 with N = 50. The blue line corresponds to = 0.1 when
the eigenvalue and eigenfunction are real and trapped a&dinator for these values of the
parametersy ande. In green the values fax = 1 and in red the values far = 10, where

the eigenfunctions are trapped at the poles.

figure 6.2(a), the normalized frequenkpf these modes fon = 1, m = 2andm = 3is
plotted againste. Whenm = 1 (in blue) the fast magnetic Rossby mode collides with an
anomalous magnetic Rossby wave travelling westward anchatalble mode branches
off, represented by the dashed line in bluemlf> 2 the frequencies remain always real
as shown in the pinkng = 2) and the red. = 3) curves. In all these cases the upper
branches are slow magnetic Rossby waves and the lower aredgsaetic Rossby waves.
Also, instability has been found by Malkus (1967), for a gptd rotating fluid immersed

in a toroidal field: B, = By sin 6. In this analysis in cylindrical coordinatés, ¢, z), the
instability occurs whemn = 1 and for a minimum value of the magnetic field intensity

equivalent to our criteriac > 0.5.
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A=w/2 Q,

0 0.5 1 15 2
a

@e=1 (0)m = 1

Figure 6.2: Dispersion relation for Magnetic Rossby Modeggainsta. Lower branches
are fast magnetic Rossby waves and upper branches are sigmetitaRossby waves. (a)
For the blue curve: the lower branch is a fast magnetic Rosstwe withm = 1 which
collides with an anomalous wave traveling westward and gobexreigenvalue branches off,
the dashed line is the real part of the complex eigenvaluee dther lines represent fast
magnetic Rossby waves and slow magnetic Rossby waves fer 2 in pink andm = 3

in red, whene = 1. (b) Behaviour of unstable modes for different values offiheameter

e = 1,10, 100, 1000 whenm = 1. The dashed lines are related to the real part of the complex

eigenvalue.

The instability sets in near = 0.5 whene is very large but onsets at larger valuesxof
whene is small, as shown in figure 6.2(b). The numerical calcutetimdicate that in the
small e regime the first fast magnetic Rossby mode={ 1) becomes unstable slightly
aftera ~ e~/*; in the case of the second fast magnetic Rossby mode %) instability
starts nean ~ /2¢ /2 see figure 6.3.

This criterion has been found by Malkus (1967), and in thetlim— oo his criterion
reduces to ours. The limit— oo corresponds to the effect of gravity dropping out from

our problem, which is equivalent to the buoyancy frequerendp small compared to the
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rotation frequency.

Sharif and Jones (2005) have found instabilitiesfior 1, considering Ohmic diffusion
in a homogeneous fluid for a spherical shell which implies &y \arge buoyancy
frequency where — 0. They found instability when magnetic diffusion was addadt,
no instability in the absence of diffusion. In this case thagmetic field had a slightly
more complicated basic state, but their results are camgistith ours, because with no

magnetic diffusion and smaldlour critical « for instability goes to infinity.

3 >
o0
N

10 — = > .
10 10 10 10 10

Figure 6.3: Values ofa and e for instability whenm = 1 for the first and second fast
magnetic Rossby mode. The modes are unstable for the vdlties parameters above the

lines.

Unstable and stable magnetic Rossby waves are polar trapipedlo increases. This
polar trapping has been also described by Cally (2003) iodhéext of a 3-D Boussinesq
thin layer approximation for instabilities and it is calledPolar Kink Instability”. As
shown in figure 6.4 the eigenfunctions fay become polar trapped for large valuesof
waves are more localised whewor « increase.

These numerical results are consistent with those obsénvedrlier studies. Tayler

(1973) demonstrated that instability can occur in a nortirggastar with a toroidal field
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35 : : : 0.1 ‘ . ‘
\ 0=0.96 A=-0.2899-0.02867i / 0=0.96 A=-0.2899-0.02867i
3’\ a=10 A=-0.48228-9.2543i / 0.08l\ 0=10 A=-0.48228-9.2543i
25l 0=0.638 A=—0.35542-0.0061838i “ | 0=0.638 A=-0.35542-0.0061838i
' 0=10 A=-0.4944-9.7613i 0=10 A=-0.4944-9.7613i
S~y S~y
< <
S e
@€ @€
~ ~
N —~
> >
'S 1S
N—" ~—
= &
-0.5 . : : -0.02 : : :
50 100 150 0 50 100 150
colatitude (degrees) colatitude (degrees)

Figure 6.4: Real and Imaginary part of the northward velocity for Magn&ossby mode
with m = 1 with N = 50. The blue line corresponds to= 0.96 ande = 1, the green curve
is related tox = 10 ande = 1, in red the values fotv = 0.638 ande = 10 anda. = 10 with

e = 10 in cyan.

configuration. He states that the occurrence of the ingiyabiépends on the topology
of the field and not on its intensity and derives its energynfilworizontal interchanges.
Later works by Tayler (1980) and Pitts and Tayler (1985) stubwhat current driven
instabilities for a toroidal field can become unstable to-agisymmetric disturbances,
both also in cylindrical and spherical coordinates, se@iB(999). The current provides
the energy for the instability, and the magnetic field is aargy source, then a strong
magnetic field is required to set the instability. In currdniven instabilities the role
of the rotation rate is to mediate the rate at which energy mmextracted from the
mean field. There are other classes of instabilities thatrgenffom the differential
rotation and current, see Gilman and Fox (1997), Dikpatil.e(2903), Cally (2003),
Cally et al. (2008), Hollerbach and Cally (2009). T¥ant instabilitiesdescribed there
occur for relatively weak fields that may be present in stéblers of planets and stars,
in differential rotating layers. Without differential ation or magnetic field the system
is linearly stable. In these cases the toroidal magnetid getracts energy from the

differential rotation, although some energy can be exééétom the current.
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6.2 Asymptotic Theory for Unstable Modes Trapped at

the Pole fora >> 10

Polar trapping of unstable modes can be understood via deyimanalysis. We assume
m = 1, to analyse the instabilities as there is no instabilityrfo 1.

In order to identify the scaling for the problem, the nortihevaelocity plots have been
observed to determine how the confinement in the poles ckawgh the magnetic

parametery.

At the north poleu = cos 6 tends tol, then a new scaled variableand its differential

operators are defined by

Y . d o d d? o? d?

le__ua - = T T T —_— = 5 75-
a dp  mdp du? A7 dji®

Then from the numerical calculations for the eigenvaluewabies 4.7, 4.8, 4.10, 4.11

and 4.14we deduce that = —1/2 + i(a — k), wherek and~; must be calculated and

are orderO(1). The factors\? and(\? — a?) will be reduced to

1
)\QNZ—QQ—Qak—ioz+O(1), N —a? ~ 207

Substituting into the general differential equation (2.4 the northward velocityi, we

reduce each term, which gives
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024 ~ o 0%
T = (1~ ,UQ)%N; ~ 2#]%/129 = 0(a),

2m ou
Ty = et e ~ (o

+0(a))Ze = 0(1),

2v1€f

Ty = e(A? — a?m?)ug ~ (—2ea? + 2kea — iea + O(1))ug = O(a?),

—m 'n’loé2 ~
T, = %ue ~ —m?iy = O(1),

T :—w ~ (2ea® + 2kea + iea — 4 +O(1))iuy = O(a?)
5 (AN2—a2m?) ,y]-ea# as),
To = 25l ~ 5% = O(0),

_ 2me(A\+2ma?)p?
T7 = (e =ammd)e(iz u/;—mQ] ~ (555 + O(1))ug = O(w).

Note that the sum of the terri§ + 75 have ordery, therefore the terms;, 13, 15, T and

T, are retainedThen, the equation (2.64) reduces to a second order diffatequation

d2ﬁg 2]66’}/1 1 ).

Although the theory is directed to latitudes correspondintpe northern hemisphere, we
know that the solutions are symmetric for both hemisphenekitais expected that the
solutions for equation 6.1 vanish at the equator which atloat northern and southern
solutions join across the equatan addition, we choose the value of the variable=
1/v/8e.

The differential equation has the form of the Whittakerefiéntial equation

d2ﬂg 1 /{Z\/_
— = = 6.2
42 4““{@ i fi =0 ©2)
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The proposed solutions atg = W(ﬂ)[ﬁ/?e‘%. Substituting into (6.2), the differential
equation becomes

W
g

dW e 1
—_ 2 - — —
+ (1 —4a%) i + (k: 5 2)W 0. (6.3)

Takingk:\/§ =n'+ % wheren' is a natural number to have finite solutions. The resulting

differential equation is the standard form of the Laguereation

_dPW

AW
+(1—f) it W =0, (6.4)

and the solutions are the Laguerre polynomia|s The solutions are a set of functions

depending of the poloidal wave numbér

dg(fl) = p2e 2 Lo (6.5)

D=

Forn’ =0, L, = 1. Therefore, the corresponding solution is

N

g(p) = e 2. (6.6)

As expected form the numerical results, the expressionh®ifriequency is increasing

with « and decreasing with as follows
A= —1/2 4 i(a — 1/v/2¢). (6.7)

The theory works in the range where the scale factor for god@iping is less than 1

1
n_ < 1.

« \/@@

From equation (6.7), we calculate the normalized frequdéocy = 10, 100 and 1000,

for different values ot. Accordingly, the results are very accurate compared witth 0
numerical results, as shown in tables 6.1-6.2 and 6.3-Ble numerical calculations
show that the correspondence between the solutiorisdsn — 2, wheren is the poloidal

wave number used for the solutions in chapter 4.
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Table 6.1: Imaginary part of the eigenvalues calculated in the asytigptbeory with the

formula (6.7). In this case’ = 0.

o 10 100 1000
e=0.01 *** 029289 992.9289
e=0.1 7.7639 97.7639 997.7639
e=1 9.2929 99.2929 999.2929
e=10 9.7764 99.7764 999.7764
e =100 9.9293 99.9293 999.9293

Table 6.2: Imaginary part of the eigenvalues, calculated numericelith the method

described in section 2.4, for= 2, N = 50 andm = 1.

o) 10 100 1000
e=0.01 *** 027 9929
e=0.1 7.5 97.7 997.8
e=1 9.3 993 999.1
e=10 9.8 99.8 999.3
e=100 9.9 99.9 999.3

Tables 6.3 and 6.4 illustrate that there is a difference eetwthe values of whene is
small because this asymptotic formula is for waves confindédeapoles. The numerical
values fora ande large are not accurate, due to the fact that the numericdlodas not

able to compute them in this regime with accuracy.
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Table 6.3: Imaginary part of the eigenvalues calculated in the asytiggiiweory. In this case

n =1.

o 10 100 1000
e=0.01 *** 78.7868 978.7868
e=0.1 ek 93.2918 993.2918
e=1 7.8787 97.8787 997.8787
e=10  9.3292 99.3292 999.3292
e =100 9.7879 99.7879 999.7879

Table 6.4: Imaginary part of the eigenvalues, calculated numericalith the method

described in section 2.4, far= 3, N = 50 andm = 1.

o) 10 100 1000
e=0.01 ** 62.6 992.9
e=0.1 *** 03.2 997.8
e=1 7.7 979 997.0
e=10 93 99.3 9975
e=100 9.77 99.7 997.6

6.2.1 Solutions near the poles

Another possible scaling for approximating solutions witlgh polar trapping is
described in this sectiofhis scaling can be more useful for characterising the fanst
at the pole due to the fact that the tefin— ;?) tends to zero near the pole and the

considerations of the last section are not valid in this case
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In the previous section 6.2, the factor related to the ldétis

1—p=1—cosf = 2sin? (g) = %ﬂ = a\;gﬂ'
If the solutions are near the north polds small, thensin /2 ~ 6/2, so
62 i
5 = a\/__ — = V2eab?

For example, when’ = 0, the solution is
iy = Afe V50 (6.8)

whereA is a normalization constant. As a consequence ofithis linearly proportional

to ¢ near the pole. Calculating the first derivative

‘Zf; [1 — V2eab?]Ae V20, (6.9)

When the derivative is zero, the value of the function is nmaxn:
diig
—g =0 when 1—+v/2eaf? =0, forthe n=0 mode.

The maximum occurs @& = 1/1/(a/2¢), whend is in radians.

The only unsatisfactory feature of this analysis is thafitoieate the second terffi, we

assumeg\? — m?a?)e(1 — p?) > m?, and that(\> — m?a?)e(1 — p?) is O(a). When

(1 — u?) is very small, close to the pole, this will not be true. To istigate this region,

we need a second scaling:

Y2 -
p=1- Pl
Then,u? =1— 22/ + —% . Therefore
272
2 _
b=k
H ; d2 _ ot d? 2
The differential operators becor‘@éﬁ —%@ and - = i Also the factor(A\* —

m2a?)e(1 — p?) — 1 — —1 — 4y¢/i. Substituting thls scaling into equation (2.64), the

terms reduce to
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T = (1 — ) G ~ 22 i = O(a?),

ou? v op?
_ 2 g 2% dig _ (2
Iy = e on ~ mirienn i = O(@);

Ty = €(\? — a?m?)tg ~ —2ea’ty = O(a?),

(A2—a?m?) 20 402

e +2ma?)?p? ~ 2~ 2
T5 = —mug ~ 2605 Uy = O(O[ ),

_ —2me(A+2ma?) pu? N dea® ~ )
Tt = (e azm®e—2) ] 40 ~ T te = O).

When the terms balance @(«?), the equation is

- dzﬁg 1 d’&g 1 26’}/2

~ + N 1~ i~ _l_ 7~~ - O 610
Pz T (T dpei) din 40 (Ut denfi) (6.10

This equation has a very simple general solution. Wedet = 1, i.e, choose, = 1/4e.

Then
42 1 day 1 1
[i—— + = g+ ———lig=0. 6.11
Mo T U dp 4 T 2w (6-11)

The general solution is

g = C it + CQ(MZL\/;), (6.12)
which can be verified by direct substitution. Now, becatuge~ 0 asi — 0, Cy = 0.
This matches with the Laguerre polynomial solutions, elgem’ = 0, g ~ fi'/2e=#/2,
ande "2 — 1, asji — 0. So asji — oo it matches taiy asji — 0. This means that we
have a leading order solution valid for allnear the pole.

For this work, the third and fifth terms of the equation (2.64ye to cancel at leading
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order in the previous scaling wherenow set to be 1, this requires
(A2 — a?m?)? — (A + 2ma?)? = 0.
For this quadratic equation, two solutions exist
(A2 — a®m?) = £(\ 4 2ma?). (6.13)

If we take the negative sign, we find complex eigenvalues

T da2m(m =2
)\:_% V*‘)‘Qm(m ). (6.14)

If m = 1 instability can be possible, as reflected in the numericallts, withm = 2
or bigger, \ is purely real, so a growing mode of this type cannot occur.el\ is
large A = —% + «ai, as expected. Note that taking the plus sign in equatior8)6.1
A is again real. The formula (6.14) seems to be consistent ettibr research which
found a similar result for the frequencies of the solutiaomSD Boussinesq thin layer

approximation where “polar kink” instabilities are memted (Cally, 2003).

6.3 Transport of Angular Momentum

There is a special interest to study angular momentum toahspthe tachocline (Zahn
et al., 1996, Hughes et al., 2007, Dikpati et al., 2003). Wesmter here how do the
unstable waves could change the angular momentum in thensyahd propose an
example.

An equation for the conservation of angular momentum canbt@med multiplying the
¢-component of the Navier-Stokes equation by the radius @ftion, R, = Rysinf
and average over longitude and time, denoted herg tsee e.g. Miesch and Hindman
(2011). These quantities are associated with the Reynoltimagnetic stresses (Gastine
et al., 2013). According to Gilman and Dikpati (2002), theiti the plot 6.5 implies that
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Re(n) X -0.28989-0.02867i :0.96 and &: 1 Re(n) A -0.48228-9.2543 a:10 ande:1
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Figure 6.5: Contour plots of the scaled height for Magnetic Rossby moile mw = 1,
e = 1 with N = 50. For weak magnetic fieldgy = 0.96 (left) the wave are not trapped,
then waves are polar trapped when alpha is very latge: 10 (right).

angular momentum is transported towards the poles, as weislthis section. Because
the average for linear terms is zero, the nonlinear termdaden into account in this

derivation. We start from the original nonlinear equati@r26b), and its)-component,

as follows
au 1 8’U¢ Ug 0U¢ qg
% 4190 — 1
ot S+ 0 cos fug + Ry [ug 00  sinf 0¢ + gty Ot 9] "Ry sm@@gb (6.15)
Oby Dby by Dby
b [QBobg 00+ by’ + Bo L+ <0558 + by cot ).

Multiplying the equation (6.15) by the radius of rotatiadk; = R, sin#, the equation

becomes
0 1 0 Oug oh
E(Rlu(b) + QRJ_QO COS 9U9 + R_O Uaae (Rlu(b) + R()U¢ 8¢ ] = ga—¢ (616)
sin9 8b¢ 8b¢ b¢ 8b¢
o 2B cost by Bog o+ S8 +b9b¢cot9]

Each quantity can be expressed by:

1 3 . *
g = _[ﬁgez(wt—mqb) + ﬁ;e—z(w t—mqb)]

Y



Chapter 6. Instabilities 167

where the star means complex conjugate apdis the amplitude of the function
depending or.

Averaging the equation (6.16) in time and longitude, thedinterms are zero due to the
periodicity of the solutions, then the expression takeddaha

0 1 0 sin 0 Oby

i (Rte) = = - (mogg (Ruua)) + =22 (bt} +

bobs) cot 9] . (6.17)

The first term on the right hand side of this equation isRegnolds stresand the second
term is related tdhe magnetic stresgGilman and Fox, 1997). From the definition of

angular momenturper unit volume
L= pRLu@

the angular momentum variation is given by

[<bg 8;6 ) + (bgbs) cot e].

sin 6

Mo

Oug
L) = —p (uosin 052) + (ugu) cose} +

(6.18)

Using the relations (2.27d) and (2.27e) between the vglarit the magnetic field, we

obtain

0 B Oug pm?a? Oug

§<L> = p[(ug sin 9W> (ugug) cos@] + E [(ue sin f—— 50 A (upuy) cosb|.
(6.19)

Calculating the averages, we have

1

4Tw;

(upuy) = (1-— 6_2“’”)(@911; + Uyliy),

where the complex frequency of the wave can be expressed-byw, + iw;, andr =

27 /w, is the period of the wave.

2.2

d (1 —e2i7) rm’a ouy, Oty
2wy = 1 ple
L =r = ( BE ) osin 055 + isin 05

iyl + digitg) cot 9}. (6.20)
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We change the variablkefor 1 = cos 0, and the differential operatdp defined before in
chapter 2. Therefore the formula (6.20) becomes
d (1 _ €—2wi’r) m2a2
—{L) =
T ey ( 2

- 1){ — 11y D, — i1y Dty + (i1gii7, + a;%)u}.(s.zl)

In the context ofx ande large, we have an asymptotic theory explained in detailétice
6.2. In this approximation the expression for the northweeldcity , for the mode: = 0,

can be calculated with the equation (6.6)

o8
() = (8€)/4al/2e=V2e0-0) (1 _ )b and 8%5 — V2eaviiy.

The relation between th& anduy is in section 2.4

2102 Ry

sin 6

Ug.
Thenuy = —14y, and the variabl@, in this approximation tends to

_ (A +2ma?)

o = =13 = a2y

and its derivative is approximated by

oty (A +2ma?) _
o = ma?) (1 + V2eay) iy,

Substituting the results into the equation (6.21), we obtai

d (1 — e 2i7) rm2a? (A + 2ma?)
dt< )= 87w; Ry ( |A|2 ) [()\2 —m?a?)
N+ 2ma? .

In the limit of largec, (A2 —m?2a?) ~ —2a*+ia, and(A+2ma?) ~ 2ka+iq, therefore
the factor reduces to

(A +2ma?) (A" +2ma?) ] _ (Bka—2)

2 —m2a?) ' (A2 — m2a?) @2+ 1) (6.23)
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wherek is an integer greater than zero defined in section 6.2. Inlgsion the angular

momentum equation is

d (1 — e 2T) rm2a? (8ka — 2) 5 5 5
—(L) = — — 1-2 2 1— |~
=0 (o~ ) (ae g 11— 24+ V2ean(l = )]l
(6.24)

Substituting the expression fag andm = 1, we have the formula

d (1—e 7)) / a? (dka — 1)

— (L) = —p(2¢)'/? —1 6.25

gk = 2 e <|M2 ) (4a2 + 1) (6.25)

A2 R3e—2V2eallom
(1+p)

There is an angular momentum change which depends on ktituds likely that this

[1—24° + V2eap(l — )]

instabilities for magnetic Rossby waves transport angulamentum in the system.

6.4 Summary

This chapter has reviewed the key aspects of instabilityfagnetic Rossby waves. As
shown instability requires two conditions = 1 anda > 0.5. These unstable modes
arise when the frequencies of fast and slow Rossby wavesmmvowards the same

value. In particular when is large the complex frequencies tends to
A= —1/2+ il —1/v2€)
and the eigenfunctions for polar trapped waves are
o) = (1 = p)ze V>0 L, /Bea(1 - ),

where.,, are the Laguerre polynomials, however we found an expnegsrosolutions

near the pole.
It is has been reported that instabilities could be a meshaor angular momentum

transport which might build the rotation profile in the sun.
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Chapter 7

Antisymmetric Magnetic Field

7.1 New Antisymmetric Field

In this chapter, we study the development of MHD waves for atisgmmetric field
configuration: B, = Bycosfsinf. The polarity of the basic state of the field is now
positive in the northern hemisphere and negative in thehgont This is one of the most
striking features of the geomagnetic field. Then we expettttie results could be more
related to the geophysical and planetary observationsdditian, the main features of
the basic state of the magnetic fielgl, cos 6 sin § are that the field is zero at the equator
and the maximum in amplitude is at a latitudetof.

Zaqarashvili et al. (2009) carried out a investigation foal®w water MHD using this
field configuration. They solved the problem in two speci@esafora® < 1. The
solutions correspond to Poincaré gravity waves and slog fast magnetic Rossby
waves, with the particularity there is a single slow modedliag eastward instead of
a set of solutions. The first case is fo 1 where the eigenfunctions corresponds to the
spherical wave functionS,,,,(e1, i) for ; = €;(¢). Then the other case fer> 1, where
the solutions are confined to the equator.

Again the basic state is chosen for a fluid in rest, the magfietd is a toroidal field
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B, = By cos #sin § and a height field constaif, which maybe maintained by imposing
and external stress to balance the magnetic stress.
Taking the new magnetic field expression, the MHD ShallowéNatodel changes to

this set of equations

aﬁ—t+2§20 cos QU(;—l—ﬁg_Z"‘(l 3 cos? G)Mj(}%obe—uoiizo COSQ% =0, (7.1b)
% + Rol;sionﬁgﬁ(sm Qug) + Rol—s[ioneaa—iz) =0, (7.1c)

% — %)] cos 988—1;9 =0, (7.1d)

% gs sin? Quy — @ coS 988125) 0. (7.1e)

Performing a Fourier analysis in the foreﬁm «) we know that each derivative with

respect tap or ¢, can be substituted by

0 _ m and Q = —iw,

oo ot
Then, the equations will be

g Oh  mBycosf . 2B, cos® 0

- by =0, 7.2a
R 00 wopRo nopRo * (7.22)

—wiug — 2Qcosbuy + =

. B . mBO
Wiy + 28 cos Oiug — h+(1—3cos*6 1bg — cosbfby, =0, (7.2b
’ ’ *" Rysin 9 ( )MOPRO pop o ¢ (7.2b)
HO 0 mHO
h =0 7.2c
wh Ry sinf 00 gg Sin o) = Ry sin 9" ’ ( )
mB,
wby + 0 cosfuy = 0, (7.2d)
Ry
B B
wby — 9 sin? Giug + 20 cos Ouy = 0. (7.2e)
Ry 0
These are the non-dimensional parameters and variables
W 9 B2 _ APRE

A= R - - .
200" O AR T gt
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a sin Giug i sin O _gh = sinfiby = sinfby
" 200R, ° T 90R, T a2R2 T B, © °T "B
Changing to the dimensionless variables and parameteessyhtem of equations

becomes
d ~ N
Nilg + ity + (1 — ,f)d—” + mauby — 2a2%by = 0, (7.3a)
0
Ny + piig — mn + o2(1 — 3p)by — mapby = 0, (7.3b)
i

(1 —p?)n — (1 — uz)dlj — mi, =0, (7.3c)

Ao + myuiig = 0, (7.3d)

Aoy — (1 — pi®)itg + mpuiiy = 0, (7.3e)

which we shall solve using a similar technique to previously

7.1.1 Eigenvalues Method for Solving the System of Equati@n

As before, the solutions proposed are expansions of Adsdcizegendre polynomials.
Each expansion must hawe> m because the polynomials are not defined/for m,
g =Y ATPMu),  by= Y BIPIu),
g = CUPMu).  bo=) DPBMp), =) E'Pl(n).

n=m n=m n=m

We substitute these solutions into the equations (7.38b),7(7.3c), (7.3d) and (7.3e),

and use the recurrence relations for Associated Legendyaguuials,
IUP:zn = pnP:Ln_l + any?:-la
DP" = (n+ 1)p, P —ng, Py 4.

(PP = pbp 1 Py + GuGni1 PTo + [PrGn-1 + Pri1Gn] P,

where,q, = (n—m+1)/(2n+1) andp, = (n+m)/(2n+ 1). In each of (7.3) we

must set the coefficient dP”" (i) to zero, to obtain a set of equations. Then, we have a
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system of equations which is a matrix equation in the faldv = Av. The eigenvectors
v are the coefficients of the Legendre expansions and thes/afueare the eigenvalues.

These take the form
MY = =20y 9qn 1Dy y — (0= 1)gn a1 By — maqu 1By + g O
— 20 (Pun-1 + Prir1n) D)y — mapuia By + pua Oy
+ (n+ 2)pn+1EZ"”+1 - 2a2pn+2pn+1D7T+27 (7.4)
ACT = =30%Gn-2Gn1B) o + Gu1 Ay —maq, 1Dy
+ @[l = 3(PnGn-1 + Pn10)) BY + mE! + poi1 ATy
- 3042]9n+2]9n+1B;n+2 - mozzanD;”H, (7.5)
Mel = puGn-1 — @uPn1] B — PP by o — €Qn-1Gn—2E," 5}
= (n—1)gn 147 + mC" — (n + 2)pn+1AZl+1v (7.6)
AB = —mgn 1 A7 — mpna Ay, (7.7)
AD = qnaqn 1Ay o —m@n1Chy — [1 = (PuGn-1 + Pni1qn) | A7

- mpn+1C7T+1 + pn+2pn+1A?—i—2' (7.8)

The coefficients4}’, D;*, B |, C}".,, E;"., form an independent set of equations, and
the coefficients4’", ,, D", ,, B, C', E" form another independent set of equations
of different symmetry. We solve each set separately using?&LM\B eigenvalue and

eigenvector solver, designed to solve the system of equade = \Bv.

7.1.2 First System of Equations

The first system of equation is related to the coefficietts D), B ,, C/",, £,

where the solutions fofiy and l~)¢ are symmetric with respect to the equator and the
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eigenfunctions foby, us andn are antisymmetric. The set of equations is
AD) = Guoaqn1Ay 9 —mGu1Cp_| — [1 — (Pngn-1 + Prns1qn) A}
— mpa1C3y + PraPni1 Ay, (7.9)
ACT = —30%¢n_1GnB™ | + @A™ — ma’q, D"
+ @[l = 3(pps1gn + Prt2dn+1)] Bpia + mEDL + Pry2 Al s

- 30‘2pn+3pn+2BZ%+3 - mOézanrzD;ng, (710)

Mell = Pri1Gn = GuiiPni2l BN — €PnisPnsa o) s — €@nn-1 B, 1 }
= ngp Ay +mCyL — (n+ 3)ppg2An’ s, (7.11)

ABL = —magn AL — mpp 2 AL, (7.12)

AA;’; = _2Q2Qn—2Qn—1DZ%_2 - (n - ]-)qn—lEzl_l - ma2Qn—lByT—1 + Qn—lcyT_l

m_

- 2a2(pHQn—l + pn-l—lqn)Dn ma2pn+lByT+1 + pn—l—leT+1

+ (TL + 2)pn+lE21+1 - 2a2pn+2pn+lD?+2> (713)

wheren =m,m+2,m+4,m+6,....

7.1.3 Second System of Equations

On the other hand, the second system of equation is obtairnesh wearrange the
equations for the other parity with coefficientst)’ ,, D", C*, B, E]".... The
eigenfunction§>¢ andu, are antisymmetric with respect to the equator and the soisiti

for b, ug andn are symmetric.

ADY = qn1@n AL — mgn O — [1 = (Prg1Gn + Pnv2dn1)] Ay

- mpn+2C;Ln+2 + pn+3pn+2Azl+37 (714)
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AOT = =30%Gn-—2Gn-1Bl" 5 + qu1 Al | — ma’q,_ D,

- 3a2pn+2pn+lBZb—|—2 - ma2pn+1DZb—|—1> (715)

Me[l = prn—1 = @uPrt1] B — €ppioni1 Erlo — €GnoGn-1E]" 5}

= (n - 1)Qn—1Anm—1 + mC:Ln - (n + 2)pn+1Anm+1? (716)
AB" = —mgn,_1 A} — mpr 1 A (7.17)
)‘A?—i-l = _2Q2Qn—IQHD:?—1 —ng, B, — ma2an? + ¢, C)

- 2a2(pn+1Qn + pn+2Qn+1)D7T+1 - ma2pn+2ByT+2 + pn+2C,T+2
+ (’fl + 3)pn+2ErTLn+2 - 2a2Pn+3pn+2D;n+37 (718)

forn=mm+2,m+4,m+6,....

7.1.4 Ordinary Differential Equation Formulation

In this section, we find a differential equation for the naréind velocity iy. From

equation (7.3d) and (7.3e), the components of the magnelicdre

. mu = (1=p?) . mp
by = —TUQ, and b¢ = h\ Uy — Tud,.

We substituté, andb,, in equations (7.3a) and (7.3b), and obtain
[\ — 20212 (1 — p?) — mP*a® )iy + (N + 2ma’p®) pitg + A(1 — ’“‘2>;Z_Z =0, (7.19)
(N2 —m?a?p?) iy + (N + 2ma’p®) piip — mAn = 0. (7.20)
From equation (7.3c) we have the relation

Uy = %[E)\(l —p)n— (1 —p*)—]. (7.22)
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Substitutingi,, into equations (7.19) and (7.20)

-

mA\? = 20212 (1 — pi?) — m*a® g — (A + 2ma’p®) (1 — /f)u%

i

d
LA + 2mai®) (1 — 1) + mA(1 — ;ﬁ)d—” —0, (7.22)
14
o
eV = a®y) (1 =122) =\ 2y i — (V=) (1 =) G = 0

(7.23)

Isolatingn in equation (7.23), the expression becomes

_ 1 2 2 2 2\i1 2 @_ 9 9\ ~
= Me(A2 —m2a2p2)(1 — p2) — m?] (N =m?a®p?)(1-p?) i m(A2ma’ ) )| .
(7.24)
and so
dn 1
dn— NeOZ —m2a?i2)(1 — 1) — m?] {2eA[N? +m®a?(1 — 24%) |
—m(\ + 6ma’u?)i
2 2 2yy g 9 9 9 9 N
—[A(m 4+ 2X) 4+ 2m*a”(1 — 2p7)] + (N2 = m2pd)(1 - 1?) V. (7.25)

arm 2
Substituting; and its derivative into equation (7.22), the resulting esgion gives

2 d21~L9 2m2 [)\2 + m2a2(1 - 2}12)] dﬂg
(1—p%) + f——
dpz (N2 —m?a?p?)[e(N —m2a?p?) (1 — p?) —m?]" dp

1 2042,“2 2 2 2 9 2 2
+{{1—M2_(>\2—m2a2u2) [E()‘ _ma:u)(l_:u)_m]

[m(\ + 6ma’pu?) + e(\ + 2ma?u?)? 1%
02 — m2a??)

_ 2em(A £ 2ma’ ) [N 4+ mPa’ (1 = 2p°)
02— m2a22)[e(N® — m2a?i2)(1 — 1i2) — m2]

}ae =0. (7.26)

The problem is mathematically more complicated than thensgtric field and the
simplification of the equations is more difficult. New factdrave been introduced, for

instancg \? — m?a?p?); this produces an Alfvén speed or frequencies dependethiteon
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latitude. Arregui and Ballester (2011) has shown that if Ai@én speed varies with
latitude then, the modes form a continuous set.

There is the possibility oA? = m2a?u? and this leads to singularities in the equation
and critical layers whep? = \? /m?a?. The behaviour of the critical layer is a nonlinear
problem and dissipative effects become important (Mas|d@86), but this case is

beyond the scope of this thesis.

7.1.5 Normalization Constant

Through the original set of equations, we will try to find ampesssion for the energy of
the system and use this as a normalization constant for gle@feinctions. Starting from
the equations for the MHD Shallow water model we will derikege expressions.

Multiplying equation (7.1a) by, and (7.1b) by,

J.1, g Oh Bpcos 0Oby 2Bjcos’l
L (Zu2) — 20, cos I g2 00 Z0CO by = 0, (7.27
at(2u(,) 0 cos Qugug + ue@@ opTo Ug 29 + 1op R Ugby » ( )
0.1, g oh 9
—(= 2Q) 0 ———uy— + (1 — 0 b
8t<2u¢> + 290 cos Quyug + R sin8u¢8<b + (1 —3cos )MopRo% 0
By Oby
— cosbuy— =0 7.28
pop Lo ¢ 00 ( )

Adding equations (7.27) and (7.28), we have

o1, 1, g Oh g Oh  Bycost 869 Oby
51 (5t 5ue) T g T gt gs T o ope g T egs)
2B, cos? 0
+(1 —3cos*d upbg + —————wupby, = 0. (7.29
( ) Hop Ro +% ¥ opRo e ( )

Multiply equations (7.1d) by’i&—? and (7.1e) by%?’, the equations are

0 H(] 2 BQH(] 8U9

— — cos 0b =0, 7.30

ot (2puo o) prio Ry "o0 (7.30)
8 H(] 2 B()HO . 9 B()H(] 8U¢
— — sin® Obyug — os 0b = 0. 7.31
at(QPMO ¢) proRo o PMORO v ¢ ( )
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Multiplying the equation (7.29) by{, and adding to equations (7.30) and (7.31), we

obtain

o [Hy, , voobyo1 o,

— | —=(ug +u +—+ + —gh

ot 2 ( PHo puo) 27
gHO @4_ gHy 8h+ gHy gHy h8u¢
TR 90 T Rysind 96 " Rysind "5 Rosind' 9¢

HyB, 5 . BoHp
- cos 80— (ugby + ugby) + (1 — 3 cos” 0 ugbg — ugby) = 0. (7.32
phoRo 8¢( e ¢ ¢) ( )pMORO( o ! ¢) ( )

— (sin Quy) +

The last equation can be expressed using differential tgpera

o [H, oo, 1 ,]  HoBp o, -
— +u —|——+ + —gh®| — cost—(u-b
ot | 2 3 PLbo P,uo) 27 proRo 8¢( )
BoH,
+gHoV - (hil) + ——2 (1 — 3 cos? 0) (uyby — ughs) = 0. (7.33)
pro Lo

Performing a Fourier analysis, in the forti™¢~+", for the equations (7.1d) and (7.1€e)
where the frequency is real. Then evaluating the termb, — ugb,, we have

B 0 (1
Upby — ugby = wzﬁzo sin 9875 ( uz).

Substituting this factor in the equation (7.33) , we obtain

o [Hy, , b, 1 ., BiH,
— (gt ui+ L+ )+ = ——
ot 7 ! PHo P,Uo) 2

cos 93(17 b) + gHoV - (hii) = 0.

(7.34)

Integrating this formula over an area, yields

b2 bé 1 BzH() 1
(ud +u + 24 + —2) 4 —gh? 4+ —0 1 —3cos®6 sin29<—u2>}d5’
/ / ot [ o+ oo o) 27 puoszg( ) 2

HyBy o // B
— cos 00— (1 - dS—I— HoV - (ht)dS = 0.
/ prolo 3¢( gHoV - (1)

(7.35)
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The second and third integral are zero and the third one uisedae eigenfunctions are
periodic ing.

Then, equation (7.35) becomes

0 [ [{ B iy By Ly
= tul4 L 424 —gh
ot y (o g pio puo) 27

BiH, 2y a2l L2
+WOT2R8(1—3COS 0) sin” 6 U ds » =0. (7.36)

The equation for the conservation of energy has an extra, teompared to equation
(2.47) due to the magnetic field configurati@hanging variables to the non dimensional
quantities

o2
5)75//2QQROHO{ 0[u9+u¢+a (b2—|—b2)]+en +F(1—3cos )ﬂg}dS—O.
(7.37)

Defining the energy per mass of the system as a constant irasntéollows

a2

1
E = / 47TQQROH0{ 9[U9 +i5+ 2(b3 + b2 3 +en’ + ﬁ(l — 3cos? )i } sin 6d6.
sin?

(7.38)

Let £ = 47Q2Rg H,, to normalize the last equation. Then

2

™ 1 ) ‘
/o {Sln G[U(’ +u¢+a *(b; +52)] +en’ + )\2(1 — 3 cos? 9)u§}sm«9d9 =1.(7.39)

Let v a normalization constant for the eigenfunctions and sulstithem into the
equation (7.39)

g = v Z AmPI(y)  eiméit, by = ~ Z BMP™(y)  eimeiet,

Uy ="y Z Cmpm(y)  eimémist, by = v Z DmP™ () ememiet

n=m n=m

n=7) ErP(n) ¢meTen

n=m



Chapter 7. Antisymmetric Magnetic Field 181

We use again this important result

9 N N
wpuy = 3 D ATAT P (W) P (w),

n=m k=m

where the star means complex conjugate. After some algebabvain fory = cosf

Yy

n=m k=m

{ A’”Am* CmOPt)  Q?(BMBI + DD
— 2 (1—p?)
30(3 m Am* 2 m m Oé2 moAmx* m m

Some integrals have to be evaluated in this equation

1 pm pm
Z Z [(ATAR™ + OOy + o2 (BB + Dy D) / —"((1“) :2)(“) dp
-1 -

n=mk=m

Sy / PGP0 d

n=m k=m

1
+ZZ cE"E™ + AmAm*]/_ P ()P () dp = 1.

n=m k=m !

(7.41)

In order to calculate the normalization constantve have to evaluate the integrals with

the Legendre polynomials (Abramowitz and Stegun, 1964),

! n+m)!
o proree an= g 2, (7.42

pe [ EWR

. (1—4?)
W(L’Z:_TZZL)', if n <k whennandk have the same parity
Lams itk <n  whenn andk have the same parity (7.43)

0, if n andk have different parity
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Ly . ~(n+m)(n+m—-1) 2n+m—2)!
/_1’”‘ P B (w) - dp = Gnt 2 —1) @n—3)(n—m 2102
+[(n—m)(n+m) (n—m+1)(n+m+1)] 2(n+m)!
(2n+1)(2n—1) (2n+3)(2n+1) (2n+1)(n —m)

m—m+1)(n—m+2) 2n+m+2)!
2n+3)2n+1) (2n+5)(n—m+2)

] n,k

Orrn . (7.44)

7.2 Numerical results

Turning now to the numerical solutions of the MHD Shallow graéquations for an

antisymmetric field, a summary of the main findings is presgihiere. Our main results
may be classified depending on their dispersion relatiom MG waves, fast magnetic
Rossby waves and an anomalous slow mode travelling westwaledfound a notable
difference in our results between the symmetric and thesmtinetric field. The slow
magnetic Rossby waves disappear from the solutions in theyammetric calculation.

A possible explanation is that these waves are a result ofleat@between the Coriolis
force and the magnetic field, but in this case the magnetid f&ekero at the equator.

Now there is just one slow mode.

7.2.1 Smalla Regime

Whena is small, the behaviour of the waves is comparable with thandl in chapter 4,

as expected. Comparing the tables for the eigenvalues) heaeen that there is a slight
difference between the eigenvalues wieis 0.1. In general the eigenvalues follow the
results of Longuet-Higgins (1968). By contrast, the setlofvanagnetic Rossby waves

are not presentin the numerical result. There is only ong slode travelling to the west.
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Fast Magnetic Rossby Waves

The fast magnetic Rossby waves are travelling to the wedtf@narge values ot or
moderate values af, these waves are equatorially trapped. In tables 7.1, dZ &) the
values for the normalized frequency are shown,for= 1 and poloidal wavenumbers
n = 1,2, 3 respectively. Whenr anda are small, the fast Rossby wave has frequency
(equation (3.18))

m

A~ SCET (7.45)

Whene is large, according to Longuet-Higgins (1968), the fast nadig Rossby waves
have the following dispersion relation for> 1

__m
e22v+1)
This formula correspond to the equation (4.4). The eigersfor the first fast magnetic

A\~ (7.46)

Rossby modep = 1, are reported in table 7.1. For smalthe values agree with the
formula (7.45) forn = 1. Fore large (10 and100) these values correspond to the first
MIG wave, the negative root in equation (4.2), with= 0. This is themagnetic mixed

Rossby-gravitymode.

Table 7.1: Eigenvalues\ for different values otx ande. Magneto mixed Rossby-gravity

mode,n = 1, m = 1 and N = 50 : Waves travelling westward.

o) 1073 1072 1071
e=0.01 -0.49988750 -0.4998751 -0.4999
e=0.1 -0.4987547 -0.4987552 -0.4988

e=1 -0.4879711 -0.4879751 -0.4884
e=10 -0.4139875 -0.4140077 -0.4160
e =100 -0.2710 -0.2710  -0.273323

The velocity field for the magnetic mixed Rossby-gravity wder this antisymmetric

field has the same solutions as for the symmetric problem.lléstrated in figure 7.1,
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the waves are equatorially trapped for latgend there is no significant variation when

increases from0—3to 10!,

1.4 ‘ 1 ‘
£=1072 e=10"
1.2 a1 a1
=10 0.8 =10
1 e=1 . e=1 .
< €=10 < €=10
S 08 £=10? s 06 | ——e=102 —
e e
2 2
$ 06 S 04
0.4 -
- 02f
02F
0 ; . . 0 : . .
0 20 40 60 80 0 20 40 60 80
colatitude (degrees) colatitude (degrees)
a=10"3 a=10""1
0.7 0.7
——e=107° ———=1072
0.67 g=10"1 0.6 g=10"1
05f e=1 . 05} e=1 .
=10 =10
> >
S 04 — S 04 — 2
eSS e
@« @«
~ ~
S 0al / : /
'S _— S _—
02f 02
0.1 0.1
0 . . . 0 . . .
0 20 40 60 80 0 20 40 60 80

colatitude (degrees)

a=10"3

colatitude (degrees)

a=10""

Figure 7.1: Numerical solution for the velocity with different valueta«in magnetic mixed
Rossby-gravity mode travelling westward for= 1, m = 1 and N = 50. The first row
corresponds tay/ sin § andag/ sin 6 for the second one. The parameteis increasing in

each column¥0—3 and107!).

Figure 7.2 shows the equatorial trapping for large values. o¥Whene is small, the
solutions correspond to the Legendre polynomials. In tipdsts there is no difference

whena is increases.
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Figure 7.2: Numerical solution for the scaled height/e with different values ofe in
magnetic mixed Rossby-gravity mode travelling westwardife= 1, m = 1 and N = 50.

The first column corresponds to= 10~2 and the second one to= 10~!.

Figure 7.3 shows the magnetic field components are equiytdri@pped waves when
the rotation is fast. Also, as expected, the amplitudes effigld are higher than the
amplitudes of the velocity, because the magnetic field ip@rional to~ A\~!, from
equations (7.3d) and (7.3e)n contrast to the symmetric field case, the behaviour of the
magnetic field will change in this case; now it is not diregitpportional to the velocity,

as shown in equation (7.3e).
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Figure 7.3: Numerical solution for the magnetic field with different wak ofe in magnetic
mixed Rossby-gravity mode travelling westward foe= 1, m = 1 and N = 50. The first

row corresponds tby/ sin § andb/ sin 0 for the second one. The parameeis increasing

in each columni0—2 and10~1).

Table 7.2 corresponds to the eigenvaluesrfee 2 in the formula (7.45), witke small.
However, these results tend to deviate from the expectestwahena increases to.1
whereas for the symmetric case the values are more accgratmereases. In the large

e region the values correspondito= 1 in the expression (7.46) and an instability starts
neara = 0.1. Note that for the antisymmetric field, instability can océor o smaller

than0.5, which was a lower bound for the symmetric field.
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Table 7.2: Eigenvalues\ for different values otx ande. Fast magnetic Rossby mode= 2,

m =1 andN = 50: Waves travelling westward.

o 1073 1072 1071

e=0.01 -0.16651 -0.16657 -0.17258
e=0.1 -0.16515 -0.16521 -0.17129
€= -0.15297 -0.15303 -0.15973
e=10 -0.09495 -0.09502 -0.10338

e =100 -0.03308

-0.03315 —0.03749 4+ 3.75 x 10~%

Table 7.3 gives the results far= 3 whene is small which corresponds to the eigenvalue

for v = 2 whene is large. The eigenvalues deviate from the formula (7.4%9mwhtends

to 0.1. In chapter 4, it has been demonstrated that for fast magRetssby waves the

wave number follows = n — m, wheren is the poloidal wave number for smalband

v is its counterpart for largetheory (Longuet-Higgins, 1968).

Table 7.3: Eigenvalues\ for different values ofr ande. Fast magnetic Rossby modes-= 3,

m =1 andN = 50: Waves travelling westward.

a 1073 1072 1071

e =001 -0.0832992 -0.0836288 -0.1140
e=0.1 -0.0829632 -0.0832929 -0.1137
€= -0.0797535 -0.080839 -0.1109
e=10 -0.0580295 -0.0583440 -0.0998

e =100 -0.0207079

-0.0209418—-0.09883 + 0.129372:
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Magneto-Inertial Gravity Waves

The magneto-inertial gravity waves are the highest frequemodes. In general for large

e or largea these waves are equatorially trapped. Also these osoitisproduce higher
amplitudes in the variablge which is the scaled height. Longuet-Higgins (1968) notes
that when the rotation parameter is low the potential enargy the kinetic energy are
in the same proportion, but if the rotation parameter ineesahe kinetic energy is three
times higher than the potential energy.

The first moden = 1 of MIG waves travelling eastwards is reported in table 7.4e T

eigenvalues for small can be calculated with the expression (equation)4.1)

P M, (7.47)

€
and wherx is large the eigenvalues can be calculated with the digpersiation for the

Kelvin mode.

Table 7.4: Eigenvalues\ for different values ofx ande. Magneto-inertial gravity waves

n=1,m =1andN = 50: Waves travelling eastward.

! 1073 1072 1071
e=0.01 13.8996 13.8996 13.8995
e=0.1 4.24517 4.24517 4.26646
e=1 1.23068 1.23068 1.23068
e=10  0.3445680 0.3445785 0.3456434
e =100 0.1026271 0.1026485 0.1047540

There is a wave fon = 1 of similar frequency travelling to the west but whers large
the wave turns into the = 1 mode in the relation dispersion (4.2), see table 7.5. As

expected, the frequencies for westward waves are greatethle eastward ones.
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Table 7.5: Eigenvaluesh\ for different values ot ande. Magneto-inertial gravity waves,

n =1, m =1andN = 50: Waves travelling westward.

o) 1073 1072 1071
e=0.01 -14.3997 -14.3997 -14.3997
e=0.1 -4.74640 -4.74639 -4.26701
e=1 -1.74147 -1.74146 -1.74085
e=10 -0.8818762 -0.8818721 -0.881443
e =100 -0.5283587 -0.5283814 -0.5306403

Next, the mode: = 2 for waves travelling eastward is reported in table 7.6. When
is large, this corresponds to the made-= 0 for the formula (4.2). We notice that with

increasingy the variation in the value of is not significant.

Table 7.6: Eigenvalues\ for different values ot ande. Magneto-inertial gravity waves,

n =2,m = 1andN = 50: Waves travelling eastward.

o) 1073 1072 1071
e=0.01 24.4188 24.4188 24.4188
e=0.1 7.6851 7.6851 7.6852
e=1 2.4316 2.4316 2.4321
e=10 0.8459042 0.8459314  0.8486
e =100 0.3796 0.3797  0.3830271

The eigenfunctions for the mode= 2, travelling to the east are trapped at the equator
whene is large, as shown in figure 7.4. For smalthe eigenfunctions are the Legendre
polynomials. The increase imdoes not produce a significant change in the eigenvalues

or eigenfunctions.
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Figure 7.4: Numerical solution of the velocity with different values«ih magneto-inertial

gravity wave travelling eastward for the second mode witk- 2, m = 1 and N = 50.
The first row corresponds @/ sin # and/ sin 6 for the second one. The parameteis

increasing in each columa@ > and10~1).

Figures 7.4 and 7.5 show that MIG waves travelling eastwagdeguatorially trapped

When

« increases to0.1, the eigenfunctions are not significantly changed from rthei

when e is large. In the smalk regime the waves are Legendre functions.

hydrodynamic counterparts.
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Figure 7.5: Numerical solution of the scaled height/e with different values ofe in
magneto inertial gravity wave travelling eastward for teeand mode:, = 2, m = 1 with

N = 50. The first column corresponds ¢o= 102 anda = 10~! the second one.

The features of the magnetic field are shown in figure 7.6.J¢@mponent is symmetric
with respect to the equator whereas theomponent is antisymmetric, for the = 2
mode, opposite to the respective components of the veloldity waves are equatorially

trapped for large and there is little variation whem is equal ta0.1.
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Figure 7.6: Numerical solution of the magnetic field with different vatuofe in magneto-
inertial gravity wave travelling eastward for the seconddeavithn = 2 ,;m» = 1 and
N = 50. The first row corresponds ty/ sin ¢ andbs/sin @ for the second one. The

parametery is increasing in each columa@3 and10~1).

As tables 7.6 and 7.7 very clearly demonstrate, westwaresvaropagate slightly faster
than eastward ones; wheris large the eigenvalues correspond to the: 1 mode for
the formula (4.2). The presence of the magnetic field doesnoalify considerably the

eigenvalues or eigenfunctions in this weak field regime=(10=3 —  0.1).
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Table 7.7: Eigenvalues\ for different values ot ande. Magneto-inertial gravity waves,

n =2, m =1andN = 50: Waves travelling westward.

o) 1073 1072 1071
e=0.01 -24.5857 -24.5857 -24.5857
e=01 -7.8533 -7.8533 -7.8533
e=1 -2.6129 -2.6129 -2.6125
e=10 -1.1119 -1.1118 -1.1097
e=100 -0.6784 -0.6785 -0.6801381

Figure 7.7 illustrates the velocity field components for the: 2 westward MIG wave.
In the case when is small, the amplitude of the velocity increases witlor westward
waves in contrast to the eastward waves. Then¢ flarge, the waves are equatorially
trapped and the solution correspondite- 3 in the large: theory. There is no significant

difference between a weak field and a moderate field for thidamo
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Figure 7.7: Numerical solution of the velocity with different values«ih magneto-inertial
gravity wave travelling westward for the second mede 2, m = 1 with N = 50. The first
row corresponds tay/ sin # andi,,/ sin 6 for the second one. The parameteis increasing

in each column0—2 and10~1).

In figure 7.8 the scaled height is plotted for the made 2. The waves are equatorially
trapped for large and the influence of the magnetic field, weak or moderate, does
change the shape of the waves. In the smalhse, there is little difference between

waves propagating to the east or west for this varigble
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Figure 7.8: Numerical solution of the scaled height/e with different values ofe in
magneto-inertial gravity wave travelling westward for ezond mode withh = 2, m = 1

andN = 50. The first column corresponds ¢éo= 10~2 anda = 10~ the second one.

The magnetic field components for the = 2 westward propagating mode are

represented in figure 7.9. THeEeomponent is antisymmetric whereas theomponent of

the field is symmetric with respect to the equator, in comt@athe velocity components.

The waves are equatorially trapped for largend there is little difference between the

eigenfunctions when the magnetic parameter increases ftorto 0.1. On the other

hand, the wave forms of the westward components of the miadgiedtl are completely

different to the eastward field.
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Figure 7.9: Numerical solution of the magnetic field with different vatuofe in magneto-
inertial gravity wave travelling westward for the seconddaavithn = 2, m = 1 and
N = 50. The first row corresponds ty/ sin @ andbs/sin @ for the second one. The

parametery is increasing in each columa@3 and10~1).

The eigenvalues for the eastward mode- 3 are reported in table 7.8 and the values
are consistent with the formula (7.47) with accuracy for Bmarhis corresponds to the
hydrodynamic formula for gravity waves. dfis large, they turn into the mode= 1 of
the formula (4.2). Whew increases, the values afdo not change significantly. These

waves are equatorially trapped for the field intensities 6f 0.1 and large:.
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Table 7.8: Eigenvalues\ for different values ot ande. Magneto-inertial gravity waves,

n =3, m =1and/N = 50: Waves travelling eastward.

o) 1073 1072 1071
e=0.01 34.6055 34.6055 34.6056
e=0.1 10.9321 10.9321 10.9324
e=1 3.4819 3.4819 3.4829
e=10 1.216644 1.2167 1.2210

e =100 0.5750407 0.5751020 0.5810703

Table 7.9 presents a summary of frequencies for the westrapghgating MIG waves
with n = 3. In the smalle regime the values reproduce the formula (7.47) for
hydrodynamic gravity waves. In our numerical results, tfaves travelling to the west
are slightly faster than the eastward ones. Whés large the waves are equatorially
trapped and the eigenvalues turn into the mode 2 of the dispersion relation (4.2).
Increasing the magnetic field does not change the eigendunscor eigenvalues, in the

smalla range.

Table 7.9: Eigenvalues\ for different values ofx ande. Magneto-inertial gravity waves,

n =3, m = 1andN = 50: Waves travelling westward.

o) 1073 1072 1071
e=0.01 -34.6889 -34.6889 -34.6889
e=0.1 -11.0158 -11.0158 -11.0160
€= -3.5690 -3.5690 -3.5692
e=10 -1.3400 -1.3400 -1.3384

e =100 -0.7913028 -0.7913090 -0.7919053
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Anomalous Mode

The new anomalous mode was found in the presence of the niafeaket, propagating
westward with a very low frequency. This is the first slow meignRossby mode which
collides with the first fast magnetic Rossby wave- 1 and the wave becomes unstable,
only for m = 1. The normalized frequency is summarized in table 7fidm these

numerical resultshe frequency of the wave can be approximated by —%‘fea‘l.

Table 7.10: Eigenvalues for different values of ande, n = 1, m = 1 and N = 50, the

anomalous westward slow magnetic Rossby mode.

Q 1073 1072 1071

e =0.01 bl Tk —5.5851 x 1078
e=0.1 ol ko —5.6038 x 1077
e=1 ol ko —5.6079 x 1076
e=10 ok —5.6048 x 1079 —5.6465 x 107°

e=100 —6.5908 x 107" —5.6071 x 107% —5.9988 x 10~*

Figure 7.10 shows the northward velocity for the anomalowsien which can be
approximated byiy, ~ sinf and the northward component of the magnetic field

perturbation. Also the eigenfunction fag is symmetric whereal, is antisymmetric.
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Figure 7.10: Numerical solution of the velocity and the magnetic field hee anomalous

slow mode travelling westward with = 0.1, m = 1 and N = 80.

Numerical results indicate thatdf> becomes nedrthe numerical method is not able to
compute the eigenfunctions at the poles and for very smadjuiencies the eigenvalues

are not accurate.

7.2.2 Largea Regime
Magnetic Rosshy waves

The fast magnetic Rossby waves can become unstablecafter0.1 and two modes
coalesce and turn into a complex mode. The unstable modesmemmplex for certain
range ofe and then suddenly split apart again, to give two real eigeega This
coalescence and separation continues asincreased. Figure 7.11(a) illustrates this
point clearly. These results therefore need to be calalilaiéh caution because the

eigenvalues coalesce with different modes depending ovellue ofe or a.
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Figure 7.11: Dispersion relation for fast magnetic Rossby wavesdfoe 1, m = 1 with
N = 50. When two modes coalesce they become complex and we plottmnigal part of
A.(@) Then = 1 mode in bluep, = 3 in green,n = 5 in red and so on. (b) The mode= 1

coalesces with the anomalous mode.

These numerical results would seem to suggest that ther iisstability form # 1.

We looked extensively aiv = 2 andm = 3 modes, but we never found any numerical
evidence for unstable modes in the antisymmetric field case.

The eigenvalues for the fast magnetic Rossby model are reported in table 7.11. The
first fast mode coalesces with an anomalous mode and wheoreases\ — —0.5 +
mai. Even though the behaviour for the other modes with the saamgyps different,
they become complex at certain valuecothen develop into real again, and so on, see
figure 7.11(b).The complete plot of this web is not shown here.

The fast magnetic Rossby waves undergo polar trapping vigamagnetic field is strong

or the rotation is fast.



Chapter 7. Antisymmetric Magnetic Field

201

Table 7.11: Eigenvalues\ for different values ofo ande. Fast magnetic Rossby mode,

n =1, m =1and/N = 50 : Waves travelling westward.

o) 1 10 102 103
e=0.01 -0.4998720 -0.2740+1.6404i -0.4886020+87.4544i -0.79887.72i
e=0.1 -0.4987279 -0.4441+5.8565i  -0.4967+96.0964i  -0.4996%+™i
e=1 -0.4916683 -0.4886+8.7318i  -0.4990+98.7711i  -0.49965+ALi
e=10 -0.4929 -0.4967+9.5969i  -0.4996+99.6013i  -0.49964+36i7.
e =100 -0.4878+0.7248i -0.4990+9.8646i -0.4996+99.7693i -06#>997.87i

The second fast magnetic Rossby maede- 2 coalesces with the mode = 4 and

become complex afterr =

1. For largea, the real part of\ tends to—0.5 and the

imaginary part tends tovo. These waves are confined at the poles for largade.

Table 7.12: Eigenvalues\ for different values ofo ande. Fast magnetic Rossby mode,

n =2,m = 1andN = 50: Waves travelling westward.

o 1 10 10? 103

e=10.01 -0.17610 -0.05521+0.594i -0.48860+87.45i -0.49897+2@3.
e=0.1 -0.17596 -0.44598+5.8381 -0.49667+96.10i -0.49968+DBi6.
€= -0.03308+0.0298i -0.45212+6.213i -0.49897 + 98.77i -98®+ 998.55i
e=10  -0.43153+0.0373i -0.49667+9.597i -0.49962+99.60i -98+ 998.87i
e =100 -0.48785+0.7248i -0.49897+9.865i -0.49982 +99.85i -98%*r 998.90i

Magneto-inertial gravity waves

The highest frequencies correspond to MIG waves. As showhapter 4 these waves

have superalfvénic frequencies|(> m«) and are stable in the symmetric field case. For

largea, for a givene, the velocity becomes subalfvénic and the modes seemdpisr.
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In table 7.13 the possible eigenvalues are summarized éomthden = 2 travelling
eastward and the result for the mode= 2 travelling westward are reported in table

7.14. The spaces with stars reflect that the eigenvalueareliable.

Table 7.13: Eigenvalues\ for different values otx ande. Magneto-inertial gravity waves,

n =2,m = 1andN = 50: Waves travelling eastward.

! 1 10!
e=0.01 24.4200 24.6383
e=01 7.6926 ek
e=1 2.4909 o
e=10 1.0337 ok

Table 7.14: Eigenvalues\ for different values otx ande. Magneto-inertial gravity waves,

n =2, m =1andN = 50: Waves travelling westward.

a 1 10!
e=0.01 -24.5858 -24.7021
e=0.1 -7.8504
e=1 -2.5763  wwx

Figure 7.12 shows the scaled height against colatitudey#ives are equatorially trapped
whene increases fory = 1, but for large values af, and even forr = 1 whene is large,

the mode disappears. The eigenfunctions cannot be cadutalyond this point.
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Figure 7.12: Numerical solution for the scaled height/e. Second mode: = 2 for

magneto-inertial gravity waves travelling eastward with- 1, m = 1 and N = 50.

There is a value of the parameteafter which the frequency of the MIG waves becomes
subalfvénic: |\| < ma. Whena goes beyond that point the eigenfunctions present a
problem neap: = £1 because the facto —m?«a?u2, which appears in equation (7.26),
becomes zero near there. This means the equation becorgatasinrhe modes could
not be found beyond this critical particular value @f suggesting that a critical layer
occurs.

The critical point occurs for a certain value®fas shown in table 7.15 for the westward

and eastward second MIG mode.
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Table 7.15: Value of o after which the wave speed become subalfvénic. For thenseco
magneto-inertial gravity waves: = 2, m = 1 and N = 50. Waves travelling westward and

eastward.

Westward Eastward

e = 0.01 28.6 28.7
e=0.1 8.9 9

e=1 2.7 2.9
e =10 0.9 1.0
e =100 0.8 0.4

The critical point increases whenis small, and the difference between eastward and
westward modes is evident wheis large. For smalt andn = 2, m = 1 with V = 50.

The numerics suggest that the critical valuexa$ given approximately by
2

Aerit = ?

Note in table 7.15 that there is little difference betweemsstward and westward

(7.48)

propagating waves. For large values ahe critical value tends to

V2r+1 n 1
el/4 (4v + 2)el/?”

(7.49)

Qerit = +

In both cases the value tends to be proportional to the frequency of the gasieihal
waves for small or large, we call this value\,.

In our numerical results at the critical point = ma where« is proportionalto the
frequency of the gravity waves. Then &s—+ \,, there is a critical point near the poles
(= +£1).

Also equation (7.26) has a singularity because the fagator m?a?u?) tends to zero for
the critical pointy = +1 when\ = ma for MIG waves.

The findings from these numerical results suggest that tisesecritical layer because
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there are no waves after a critical point. A critical layeulcbbe defined as a region
below a critical point with a considerable change of the miotme, also it might absorb

the waves. The absorption of waves is evident in gravity wg@éihler, 2014).

The critical layer is a non-linear problem that is beyondhefpurpose of this thesis, but it
is another possible area of future research. Several methodently exist for studying

how the waves interact with the critical layer, one commoasvear is to set complex

frequencies a3 = A, + i)\; (Buhler, 2014) or consider viscosity (Wahlén, 2009). Als

in the literature there are other methods (Aasen and VarHi6).

7.3 Analytical Approaches

7.3.1 Cartesian Coordinates Approximation

In this section, we develop an approximation for a weak gntieetric magnetic field,
similarly to the method of Zagarashvili et al. (2007), in @rdo enumerate the types of

waves that we can find.

In Cartesian coordinates there is an analogous
i antisymmetric field for the shallow water
z system, when the basic state of the magnetic
field is B, = Byy and the height isH,, a
y constant. In a tangent plane to a surface of
a sphere, the coordinateis in the azimuthal
direction, they coordinate points to the south
and z is the vertical (Vallis, 2006), see figure
7.13.

Figure 7.13: Tangent plane geometry. The shallow water equations in this context are
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linearised to
e uy= g, 2y e T (7.500)
5’% = ﬁ ‘2_’; _ g_Z’ (7.50b)
g—}; + HO(%T;”E + %) —0, (7.50c)
B By, + By o, (7.50d)
a;t Boy%“y (7.50€)

where f = f(y) is the Coriolis parameter. Differentiating (7.50a) andb0h) with

respect ta, we have

82ux 8uy . B() 8by B() 8 b 02h

gz o T oo 0t o’ ozor  Yozor (7.51)
a;;y +J a;fx - /ioo gigt : ;;gt- (7.52)
Substitutlngaaﬁ, by and ; into equations (7.51) and (7.52)
8;:; - % = (C2 + vif)i:;; + gg;g;, (7.53)
85;?’ +f55t; =%y’ 882 : +C§§28 +C§a; 2, (7.54)

wherevy = B2/ppu, is the Alfvén speed and?? = gH, is the velocity of the gravity

waves. We perform a Fourier analysis in the foeit:=*—~*  then the equations become

(k202 + k20%y? — w)u, + ifwu, — ikng% =0, (7.55)
Y
: 2 _ 2y%y2 o Mo LA 7.56
ifwu, + (W — kivay”)uy + ik, 0y 0 (7.56)
From equation (7.55)
- i 2ty 7.57
“r_(kgcgmgugy?—m[m Od__f“’“y]' (7.57)
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In this case, we use théplane approximation for the Coriolis parameter, whére-
fo + By, whereg = 29/ R, cos Oy and f = 2{), sin O (Vallis, 2006). We differentiate
the equation (7.55), then

du 1
® = k.Ch
dy ~ (2CE+ I2vhy? —w?) [0

d?u,
dy?

— 1w, — ifow% — 2k§viyux] . (7.58)

Next, we substitute, and its derivative into the equation (7.56)

d?u, 2k2C3Y duy,

E202 0% — w2
(kvay” =) G2t e T ey =) @y

2, .2 kQCQ k2 2,2 _ 2
+{k15w+ (f0+ﬁ2y) w _ ( x O+ mZAy w )(kivin_WQ)_
C’O CO

Al + By Y,
(k3CF + kpvdy? —w?) 7Y

(7.59)

The following part of this section moves on to describe somgr@ximations to the
solution of the above equation. Also it could be demongtréi@at some complex fast

magnetic Rossby mode are present in the system.

Limit when v < C?

In the case where the magnetic field is weak and we consideesvaway from the

equator fy < fp), equation (7.59) simplifies to

d?u wt o fRw?
—w? =2 4 3k Bw + ki — — + L2 u, = 0. (7.60)
dy? { Cc? C? } v

We propose solutions of the form), ~ ¢*+¥, hence
= [fo2 + Co (K + kj)]w — Bk, C5 = 0. (7.61)

For large frequencies, the last term in the equation (7 6hgglected, and the solutions

are the Poincaré-inertia gravity waves as in Zaqarasétdl. (2007)

w? = f§+ Co(k2 + k). (7.62)
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For small frequencies the first term of the equation (7.61ym®red. In this case the
solutions correspond to fast magnetic Rossby waves

kB
gk (&)

w =

(7.63)

Low frequency limit

When the magnetic field is weak, < 1, and the frequencies are law < 1, then
the factork2Cg + k2v%y? — w? — k2CZ. Substituting this approximation into (7.59) the

expression reduces to

d*u du
(Koo ) ot + 2k
2,2 9k, 2
+{—(f0 * 52y) i Bkyw — UA(fg i ﬁy)wy — B2(K2v%y? — w2)}uy = 0.(7.64)
Co Co
The frequencies for slow magnetic Rossby waves are expartezl
2
w = Falag, (7.65)
5
wherew ~ O(1). Now assume? /3? < 1 and(f, + By)* ~ k2C?, to get
du du
2 y ity A 72,2 _
PoaE {w K2y }uy 0, (7.66)

Substitutingu, = uy~/? the differential equation is now the modified Bessel equatio

d?u du 1
2 - 2 2 -~ _
Vot g, (k2 + G &) puy = 0. (7.67)
with solutions
IV(kry> K,,(/{ny)
uy = A% T+ B (7.68)

wherev is an integer number for defined solutions add= 1/4 — &. The frequencies

of the waves are given by

= Fai (1 — zﬂ). (7.69)
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These are not wave like solutions, diverge when> co. The equation (7.64) is valid
providedy is large compared to the very smalfv? /3. These findings cannot be

extrapolated to values @f close to the equator there is a different equation to solve.

Low frequency limit: near the equator

A new scaling is used for the case when the waves are equbttr@goped

L:)UA R

Yy = 3 7. (7.70)

Also w?v? /3% < 1 theny — 0. Then the differential equation becomes

2
0*u,

ou
I — 22 —a

— &%u, = 0. (7.71)

This is the Legendre differential equation with solutians= P, (y) and frequencies

equal to
v}

n(n+1). (7.72)

w=—

This solution corresponds to magnetic Rossby waves trageltestward and is valid
in the limity ~ 0 but diverges for other values gf This conclusion proves that slow
magnetic Rossby waves are not present in the system. Zagdras al. (2015) have
mentioned that slow magnetic Rossby waves could explaifRibger-type periodicity
in the solar tachocline for a toroidal magnetic fighty = Bysinfcosf. However,
our results have demonstrated that the slow magnetic Ragabgs are absent for this
field configuration. To get valid wave-like solutions forwlanagnetic Rossby waves,
additional physics, such as magnetic or vicous diffusioegaired. The analysis sheds
light on why it was not possible to find slow magnetic Rossbyegan a diffusion-less

model withB; = By cos f sin 6.
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7.3.2 The Axisymmetric Casem = 0

In the case of a symmetric magnetic field analysed in chagt€&swhenm = 0 the
system of equations reduces to the axisymmetric case fondhemagnetic problem,
which has been solved and extensively studied by LonguggiiHs (1968). In contrast,
the presence of an antisymmetric magnetic fiBld= B, cos § sin § leads to a new case
whenm = 0, which is the interest of this section.

The system of equations (7.3a)-(7.3e) for= 0 is

Mg + piig + (1 — ;ﬁ)j—” —2a%1%by = 0, (7.73a)
o
Nig + pitg + (1 — 3u*)bg = 0, (7.73b)
exy— Lo _ g (7.73¢)
dp
Abg = 0, (7.73d)
Aoy — (1 — pi®)itg = 0. (7.73e)

In the axisymmetric case, the northward component of theneiag field is zero.

Substituting (7.73d) and (7.73e) into the first three equistiwe have

d
A2 = 202%(1 — p2)]itg + Aty + A1 — ;ﬁ)d—” — 0, (7.74)
o
Nig = — iy, (7.75)
exy— Lo _ g, (7.76)
dp
Substitutingu,, into equation (7.74), we obtain
2 2 2 2 2 ~ o\ AN
(A —2a,u(1—,u)—,u]u@+)\(1—u)@:0. (7.77)
Differentiating this expression, we have
d277 d77 d’&g
M1 = )= = 22 pu—— + [\ — 20212 (1 — pi?) — p?]——
( “)d,ﬂ udﬂﬂ a”p (1= p”) u]dﬂ

—2u(1 — 20 p% 4 202(1 — p?))itg = 0. (7.78)
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Substitutingu, from equation (7.77) and its derivative (equation (7.76}pi(7.78), an
equation for the scaled heightjs

d> A2 —1—202%(1 — p?)? d

(1_“2)—2+{ [2 2 2(2 ,u>2] } o

dp (A2 —p2 = 2a2p2(1 — p?)] ) dp

€[N — i — 222 (1 — p?)n = 0. (7.79)

This second order differential equation will be solved ia tase whereis small.

Small e regime

In the case whean is small, the gravity waves have large frequencies, and dboaten
(7.79) reduces to

2 d
(1- M)d—z —ou T Ny =, (7.80)

du dp
which is the Legendre differential equation with solutions

n=Puy), and A=y/0FY (7.81)

€
These are the gravity modes, found by Longuet-Higgins (L9@#ere P, are the

Legendre polynomials.

Large e regime

Whene is large, the numerical results for the non-axisymmetrigecshow that some
waves are equatorially trapped, then+ 0. Therefore the terms— ;2 ~ 1 andu* ~ 0.
Hence the equation (7.79) becomes
d*tg
dp?

Let us define a new scalg: = (1 +2a2)"4e'/44. In this scaling the differential equation
W

+ €A — (14 2a2) i = 0. (7.82)

is
dzﬁg 61/2)\2
o AT 202

— x*Jag = 0. (7.83)
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This is the parabolic cylinder differential equation, wablutions

1/2,.1/2,,2

fg = Ce™ 21202 220 (1 4 902) /41y (7.84)

forv =0,1,2,...andH, are the Hermite polynomials. The dispersion relation festh

set of solutions is
(2a% + 1)1

A =+(2v+1)2 7

(7.85)

These are gravity waves with positive and negative fregesndn this approximation
there is no difference between positive or negative freqesn We note that i& is equal
zero the frequency tends to the first order approximation for the frequency eivgy
waves in the hydrodynamic case (equation (3.33)). Theteffiethe magnetic field is to

increase the frequency of the waves and enhance the egliatapiping.

7.3.3 Kelvin Wave

One important feature of a Kelvin wave is that the flow is coaised to travel towards the
east or west, and the northward velocity becomes zero whencrease the parameters

a or e. Using the fact thatiy — 0, the system of equations (7.3a)-(7.3e) simplifies to

pitig + (1 — ,ﬁ)j—z —2a%1%b, = 0, (7.86a)
Ny — mn 4+ ma?uby = 0, (7.86b)
A1 — p?)n — mii, = 0, (7.86¢)

by = 0, (7.86d)

Abg = —muily. (7.86€)

Substituting~7¢ into the equations (7.86a) and (7.86b), we obtain

d
(A + 2ma®®) ity + A(1 — ,ﬁ)ﬁ — 0, (7.87)

(N —m*a®u?)iy — min =0, (7.88)
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A1 — p?)n — miy, = 0. (7.89)
The equations (7.87) and (7.89) lead to a first order diffgabaquation

mal—77 +e(X + 2ma?p?)un = 0. (7.90)

dp

The solution is obtained by simple integration
n = ek Otma’s?) (7.91)

This wave is trapped at the equator for larger « as it is expected, and the dispersion

relation is approximately
m

/e

which is the same expression found by Longuet-Higgins (L9&®wever, a negative

A~ =+

frequency is still possible if the factqyea?u? > 1. There is a possibility that a negative

Kelvin wave is present.

7.4 Summary

The numerical results and theory reported here appear foosiufne assumption that
the waves arising by the antisymmetric magnetic field arssdied in four types: MIG
waves, a Kelvin mode, fast magnetic Rossby waves and an dowosrsdlow mode. In the
small o« regime the MIG waves behave as expected from the Longueajhhig 1968)
paper and the fast magnetic Rossby modes also follow thebRagave formula of

Longuet-Higgins (1968).

To summarise, the oscillations have the same featordé® properties of the waves arise
by the symmetric field problem in chapter 4 except tloe onset of instabilitys not

a = 0.5. Now the value ofx which separates the regimes is in the intervgDaf, 1].
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According to Zagarashvili et al. (2009), the solution foistmMHD shallow water model
with the toroidal fieldB, = By sin 6 cos ¢, in the limit of smalla ande, includes two sets
of waves: magnetic Poincaré waves (surface gravity waaed)nagnetic Rossby waves
(fast and slow). They found a sequence of fast magnetic Rragabes but a single slow
mode) ~ ma? travelling to the east. However, their formula for the eigectionsi,

is singular atu = «, so their solutions suffer from the same problems that inlaiae
frequency limitin section 7.3.1. An important fact is thabiur results there is one single
mode travelling westward for slow magnetic Rossby waves,angequence of modes

depending on a wave number.

In the other limit € > 1 buta? < 1), they found equatorially trapped waves for large
e and moderate: and mentioned the Poincaré waves and fast and slow madretgby
waves. This discrepancy could be attributed to the factithéte context of moderate or

largec, the slow magnetic Rossby solution does not satisfy theitiond /ca? < 1.

There are a number of similarities between their results ang. MIG waves are
equatorially trapped for large ande and fast magnetic Rossby waves are confined at
the equator when is large andy has a moderate value. On the other hand, the slow

magnetic Rossby waves are not equatorially trapped for aluewofa ande.

Whenq is large the magnetic Rossby waves are unstable and the M@swauld be

absorbed by a possible critical layer.
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Chapter 8

Conclusions

In the present research, the aim was to study solutionséd¥itHD shallow water system
of equations with a basic state of a toroidal magnetic fielthexformB, = B, sin ¢ for
chapters 4, 5 and 6, and the antisymmetric fdsgphn= B, sin 0 cos § in chapter 7. We
suppose that the basic state height is maintained to beasurf&t)) by an external stress.
The solutions are evaluated in a whole range for the parasete 4Q2R2/gH, and
o = B2/pupdQ3R3, in order to apply the results to geophysical and astrophysi
context. The numerical method was based on the Longuetiitigd968) paper and
analytical solutions were developed for limiting cases.

These cases is not a realistic representation of the coat@ticscenario in planets and
stars, where the magnetic field has a complicated configmsaand zonal flows. Also,
the thermal wind shears may be important and isosurfacegesfspre may not be
spherical. To keep the model treatable this study did ndadecdiffusion or differential
rotation. The diffusion may be particularly important whée model is applied to the
stably stratified layer of the Earth’s core. The absence fiéreintial rotation in the
problem limits the interpretation of solutions that can élated to the solar tachocline or

other stars. But the simpler the mathematical model the morarate it is likely to be.
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Symmetric Magnetic Field: B4 = Bysin ¢

The solutions can be classify in four types: MIG waves tiavgkastward and westward,
fast magnetic Rossby waves travel to the west, slow magRessby waves propagating
eastward with an anomalous mode travels to the west and aptexaal solution which
exists for large: the Kelvin wave travels to the east, though in the presehaa mtense

magnetic field there is a Kelvin mode travelling westward.

The solutions are presented as a discrete set of antisyimraett symmetric oscillations
depending of the poloidal and azimuthal wave numbers, éxaebe case of the Kelvin

wave which is a single mode.

Magneto I nertial Gravity Waves
The Magneto Inertial Gravity (MIG) waves propagates eastvand westward. The
normalized frequency remains superalfvénic> ma and the modes are alwagtable

There are no instabilities for these modes.

e Small o regime: The normalized frequency is proportional toe~'/? for small
values ofe and the eigenfunctions are the Associated Legendre polai®m
P™(1). Whene is large) ~ ¢ /% | here MIG waves are equatorially trapped

and the eigenfunctions correspond to the parabolic cytidetions
ﬂ@ = Ce_%61/2“2H1/(€1/4/~L)7
whereH,, are the Hermite polynomials.

e Large o regime: When« is large the behaviour of these waves is controlled
mainly by the magnetic field and| tends to the Alfvén frequenay.« + 6, where
the small deviation depends on'/?¢~'/3. These waves aequatorially trapped

for large ¢ and/ora and the asymptotic form of the equation for the northward



Chapter 8. Conclusions 217

velocity has a set of solutions corresponding to parabgliader functions

~ _1.2 2 S
g =€ 1° M H,(—).
0 (\/5)
Kelvin Wave
The first mode of MIG waves travelling to the east becomes giK@lave wheny ande
are increased. The northward velocity goes to zero and theréiduces to being purely

in the azimuthal direction.

e The frequency for the Kelvin wave goes~ o + 1/(2¢a?). These waves are

equatorially trapped with eigenfunctions

~ _ap
Uy = € 2.
e If the magnetic field is strong enough for a given value,dhere is a Kelvin mode
travelling to the west which is also trapped at the equatat, exists owing to the

magnetic field.
Magnetic Rossby Waves: Small « regime

e The fast magnetic Rossby waves propagate westward and soectdi set of
frequencies are in the superalfénic regife ¢ ma). There is almost no effect
of the magnetic field, the frequengyis independent of as for the hydrodynamic
Rossby waves, for is small, and the eigenfunctions correspond to the Assegtiat

Legendre polynomials.

e For e large the magnetic mixed Rossby gravity mode<{ 1) tends to\ ~ e~ /4,
Then the other modes behave likev ¢~'/2 . The eigenfunctions corresponds to
the parabolic cylinder functions and the wavesegeatorially trapped for large

values ofe and moderate values of
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e The slow magnetic Rossby waves are produced via a balanvedrethe magnetic

field and the Coriolis force: when = 0 these modes are absent. The waves
are a set of discrete very small subalfvénic frequencieiswtends to ~ ao?

in the smalla regime with eigenfunctions defined by the Associated Legend
polynomials. This result is very sensitive to the magnitofiehe magnetic field,
whereas the other waves are just slightly affected by thenetagfield, in the weak
field regime. These oscillations amet equatorially trapped. On the contrary, for

some values of: the waves can beonfined at the polesven whenv is not large.

One anomalous slow wave travels to the west which corresptmd sinusoidal

oscillation with a dispersion relation af= —0.2ea* for m = 1.

Magnetic Rossby Waves: Large o« regime.

e For sufficiency large magnetic field (> 0.5) andm = 1, the waves enter in a

new regime, fast magnetic Rossby waves become subalfa@xiche first mode
n = 1, the magnetic mixed Rossby gravity mode collides with thenaalous slow
magnetic Rossby mode and becomes complex. The second mbdescwith the

n = 2 slow magnetic Rossby wave, and so on.

Near the transition pointa( ~ 0.5), the fast magnetic Rossby eigenfunctions
correspond to the associated Legendre polynonaigls P (). In this region,
the frequency is calculated By= —m /2 + 6(c, n, m) with a high accuracy where

5 < 1.

As o or e increases, the complex frequency tends te —1/2+i(a—1/+/2¢) and
the eigenfunctions ar@, ~ (1 — p)Y/2e~V2el-w L  whereL, are the Laguerre
polynomials. In addition, the modes undengolar trapping in this regime and

angular momentum is transferred toward the poles.
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e Thisis a current driven instability that has previouslytetudied by Tayler (1973,
1980), Pitts and Tayler (1985) for stars containing a tabfield and Malkus
(1967) and others in the geophysical context. Also in stadg@danets the presence
of the differential rotation may lead to joint instabili¢Gilman and Fox, 1997),
but field strengthat onsetire lower for those joint instabilities than those in cutren
driven instabilities. In addition, the configuration of thasic state of the magnetic

field determines the stability of the field.

e The frequencies of the magnetic Rossby modes:fof 1 are real and have the
same behaviour as the = 1 case whe is small. These waves are alwastable
In the case of large, the frequency tends to be linear withhowever, for the case
m = 2, the eigenvalues satisfy the equatior —1/2+2[(n+1)a]*/2¢~1/* and the
eigenfunctions followsiy ~ (1 — p)e 2vee-w £l astly, the magnetic Rossby
waves form > 3 has frequencies ~ +a+/m(m — 2) and the eigenfunctions are
lig ~ (1 — p)m/2e=2V2mea(i=p) =1 A|| cases correspond to wavespped at
the poles and the formulas can describe the eigenfunctions and\egess with

high accuracy.

Antisymmetric magnetic field: B, = B sin  cos ¢

In this case, when the basic state is an antisymmetric figaorth and south hemisphere
will have the opposite polarity, and the field at the equatiirve zero. This will lead to

many consequences for the waves that are arising in thigxiont

Since the problem is now more difficult to solve, we approxensome solutions and
make some comparison with the analogous Cartesian problaave an idea about what

waves we can find.

We found three kinds of oscillations: MIG waves travellirgsgvard and westward, fast

magnetic Rossby waves propagating to the west and one amosmabde that travels to
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the west. We stress that the set of slow magnetic Rossby wavpagating eastward are

absent in this field configuration.

Small o regime

e The behaviour of MIG and fast magnetic Rossby waves remamgas to the
symmetric case. The main change here is that the instalmlitie ofa has changed
to lie in an interval~]0.1, 1], and we note that the instability can start befare-
0.5.

e From the numerical calculations, we note that there is am€mmahmus mode

travelling to the west, with a frequency estimated to\be —4+/2/100ea*.

Large o regime

e The numerical evidence shows that the MIG waves becomefséhal for certain
value ora which depend on, exactly when the frequency tends to be similar to
the frequency of a hydrodynamic gravity wave. After thidical point the waves
disappear. A likely explanation of the suppression of MIGvesis related to
the existence of a critical layer which absorbs the wavesoAlIG waves are

equatorially trapped for large or .

e The fast magnetic Rossby waves start to become subalfwér@oa increases. We
did not define exactly where the instability point lies heBait the fast magnetic
Rossby waves coalesce with each other in a small rangeaafl then become real
again and later collides with a different mode and becomeptexragain, and so
on, weaving a net where instability appears and disappé€hesfirst fast magnetic

Rossby wave coalesces with the anomalous slow magnetibiRosse.
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e Analytically we found a Kelvin wave travelling eastward whiis equatorially
trapped and the frequency depends on the rotations e '/2, similar to the

symmetric problem.

e Also, the axisymmetric casen( = 0) was solved analytically and the result
shows gravity waves in the limit of smallwith positive and negative frequencies.
For largee these waves are equatorially trapped and large valuesesthanced
the equatorial trapping. In the symmetric case, the probteduces to the
hydrodynamic case fom = 0 and was solved by Longuet-Higgins (1968). He
found a set of gravity waves depending on the poloidal wavabar » with

positive frequencies.

This section has reviewed the key aspects of the waves #abartions of the proposed
problem. The following part of the conclusions moves on teati®e in greater detail the

possible applications for these results in the geophyaitdlastrophysical context.

Implications
The Stably Stratified Layer at the Earth’s Core

Considering the existence of a stably stratified layer aQhH, we can use the values
of the parameters calculated in the introduction of thisknw@able 1.1) to obtain the
solutions for the MHD shallow water equations for a toroifield B, sin #. Then, we
have four kinds of waves: the MIG waves, fast and slow magri@issby waves and the
Kelvin wave. We will present some first modes, fo= 4 x 10~* (B ~ 0.02T), ¢ = 0.08,

m = 1, andN = 50. None of the waves are trapped at the equator and instaisiligt

possible with this value af.

e For these values, the numerical calculation for highesfueacies corresponding

to MIG waves have a maximum period 28 days for the first model.6 days
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for the second one and the following oscillations with dasmeg frequencies. The
electromagnetic effect of MIG modes can not reach the seidathe Earth because

the screening of the mantle.

e The fast magnetic Rossby waves have periods f2@rdays tol.55 years for the
westward propagating waves. Due to the screening of thelenduase waves have
little chance of reaching the Earth’s surface. In obseovedi studies, Jackson and
Finlay (2007) show some flux spots traveling westwards orsthitace of Earth’s
core with a period hundreds of yeat9( ~ 1000 years) and wavenumberns, (= 8
andn = 11) which are confined in the equatorial region. These resutigsst that
fast magnetic Rossby waves could not be related to this Kirsgeoular variation

for these values of the parameters.

¢ Inthe case of the lowest frequencies which are capableveltiarough the mantle
with periods from2135 (n = 2), 854 (n = 3), 474 (n = 4), 305 (n = 5), 213
(n = 6),... years and travels to the east & 1). It could be possible that the
measurements of the geomagnetic field can reveal somedsagumilar to these

oscillations.

e The anomalous mode propagates to the east and has a long glexia 0'2 years,
even greater than the age of the Earrthx 10° years. In this context the presence

of this wave has no physical meaning.

If we takee = 2.7 from table 1.1, the results will change but with the same kaions.
The MIG waves will have periods of few hours, the periods et faodes will be around
1 day to several days and the slow magnetic Rossbhy wave peavida®t change, as the
formula does not depend @n

If the magnetic field in this stratified layer is weaker= 1.7 x 1075, (B ~ 10717, the
slow magnetic Rossby modes could have periods of millionyzefs.

These results must be approached with some caution in gemti@groblems. It would
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be a better approximation if a more realistic basic statenatg field with a radial

component were used, but this work provides important hisignto the properties of
the MHD waves. The difficulty with including a radial magreetield is that waves can
travel along field lines and hence out of the shallow layers Would possibly drain wave
energy out of the stable layer. This means that a more coatptigoroblem in which the
stable shallow layer is coupled to the deep interior of theeiooore would have to be

studied.

The Solar Tachocline

The present study raises the possibility that these oBoillsican be produced in the solar
tachocline and could affect the “magnetic weather” call@drsactivity (Spiegel, 1994).
A possible estimation for the parametersiis- 0.2 ande = 0.04. Our numerical results,
form = 1 and N = 50, can give us a good illustration of possible oscillationsiag

in this layer. It is important to note that the waves are nestéd as a single mode of

oscillation or sometimes as a superposition of waves.

e The highest frequencies corresponding to MIG waves triaxgleastward or
westward could have approximated period&.a@fdays for the first modd,.1 days
for the second]8.7 hours for the third one and so on. These results are comgarabl

with some gravity waves (g-modes) produced below the cdinrezone.

e The fast magnetic Rossby waves should have frequenciefsaiays for the first
mode of a sequence of modes~&7 days. Even though has a moderate value

the waves are not equatorially trapped in this case (for dnéigurationB sin 6).
e The anomalous slow magnetic Rossby mode should have a jpériodS885 years.

e The slow magnetic Rossby waves are a set of oscillationsemier first mode

could have a period arourid6 days, the next modes decrease in period to the value
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of ~ 92 days. It is important to bear in mind the uncertainty of thessponses.
Lobzin et al. (2012) has found 156 days periodicities in tbeuorence rate of

coronal type Ill solar radio burst in a similar time scalertllaese waves.

If we takee = 0.03 from table 1.1, the periods for the waves will remain similar
Observations in solar magnetic activity (Mcintosh et ai12) have revealed patterns
travelling westward with phase speedS®b5+2.25m /s and2.65+1.60m /s in the north
and south hemispheres and eastward group speetisdof 15.3m /s in the southern
hemisphere ané3.8 4+ 20.8m/s in the northern hemisphere. They believe that this is a
kind of slow magnetic Rossby wave travelling to the east {@sthe context of solar
observations) due to the rotation and the toroidal magriiefid of the tachocline. We
could infer using the dispersion relation for these modesafoeak field (equation 2.72)

and some simple formulas of movement in a circle

21 R, w m
Uph = mT y and )\IQ—%I—TQO’

a relation between the magnetic parameter and the phasstyelbthese waves

2 _ Uph

o

for a given poloidal wave numbet, Then, our calculations suggest that the value: of
could be around.1 x 1072 (n = 3) t0 2.8 x 1073 (n = 12). Hence our estimations of the
solar magnetic field for the tachocline could be aro0md” ~ 0.17 (~ 103G). However,
these magnetic Rossby waves have the feature of that the ppasd and group speed
in the azimuthal direction are the same, as shown in sect@i.2This fact does not fit
with the observations, maybe due to that this model is vemnpk and does not take into

account differential rotation.

Due to the uncertainty of the values farin the solar tachocline, we cannot provide a
good estimation for the periods for the slow magnetic Rosgayes. In the case of a

weak field: o = 2.32 x 1073, the slow magnetic Rossby waves could have periods of
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1713, 685, 380, 245, 171,... years, fom = 1,2,3,4,5,.... Zagarashvili et al. (2015) has

obtained similar results and has associated these wave&Rwger type periodicities.

However, the fast magnetic Rossby waves and MIG waves niaitit@ir frequencies in
almost with the same valuedfvaries from~ 1073 to~ 107!, as it is shown in the tables

of chapter 4.

According to these data, we can infer that the magnetic frelthé tachocline could be

weak~ 0.17(103G), in order to have slow waves with periods of decades.

Olah et al. (2009) have studied the magnetic activity of dfarstype stars (G-K) with
rotation rates from~ 0.02 to ~ 0.95 times the rotation rate of the Sun. They found
multiples cycles in the stars with lengths from2.5 to ~ 14 years but not in this order.
Even though the authors suggested that these periodiareedue to a dynamo (Gilman,
1969), itis possible that slow magnetic Rossby waves caeilEslsociated with the cycles.
Considering some appropriated values of the parametersde for these stars similar
to the Sun, the slow oscillations can have periods of yeaidthoAgh, we have to be
cautious for the direct application of our results to stassPitts and Tayler (1985) had
stated in similar research that the results “obtained aggestive rather than rigorous”.
The antisymmetric field configuration presents similar galtor the perodicities. There
is no significant differences from the symmetric case in thisge of values for the

parameters ande, neither in the solar tachocline nor the Earth’s core steaktiayer.

Future Work

More research is needed to better understand the solutotisfantisymmetric problem
B = Bysinfcosd, particularly for large values of the magnetic parameier The
critical layer could be more studied and the windows of ibsity for magnetic Rossby

waves have to be described in detail. Introducing diffusroght be helpful here.

Also, the analysis could include diffusion or differentiatation in order to estimate the
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effect of it on the behaviour of the waves, and in this formtéryeproduce with accuracy

the conditions of the stratified layers present in the nature

Final Considerations

This research makes several noteworthy contributions éosthdy of MHD waves in
rotating fluids and provides evidence with respect to newesaoghich are excited in
the system. Despite the limitations of the model, this stoffigrs a deep insight into
the dynamics of the waves and how the rotation and the maxfingdt affect them. We

expect that this systematic investigation can complentengarlier studies.
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