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Abstract
The 2D shallow water approximation in magnetohydrodynamics is solved, numerically

and analytically, for a perfectly conducting fluid on a rotating sphere with a basic state

for the toroidal magnetic field:Bφ = B0 sin θ. The results are given in terms of the

parametersǫ = 4Ω2
0R

2
0/gH0 andα2 = v2A/4Ω

2
0R

2
0, whereΩ0 is the rotation rate,R0 is

the radius,g is the gravity,H0 is the height of the layer andvA is the Alfvén speed. Five

types of solution have been found: Magneto-inertial gravity waves (MIG), Kelvin waves,

fast and slow magnetic Rossby waves and a slow anomalous modetravelling westward.

A comprehensive numerical study describes the modes in a full range of parameters.

As α → 0, the eigenfunctions are the Associated Legendre polynomials, if ǫ → 0. When

ǫ → ∞ the eigenfunctions describing MIG and Fast magnetic Rossbywaves are defined

by the parabolic cylinder functions for waves confined to theequator. The slow magnetic

Rossby waves are not equatorially trapped.

Whenα ≥ 0.5 there is a transition for magnetic Rossby waves. The slow andfast

modes coalesce and an unstable mode emerges, but only when the azimuthal wavenumber

m = 1. After this transition point (α = 0.5) the fast magnetic Rossby waves turn into

subalfvénic waves and tend to be trapped at the poles.

Asα → ∞, the MIG waves become equatorially trapped Alfvén waves. These modes are

always stable. The slow and fast magnetic Rossby waves (realand complex) are polar

trapped with eigenfunctions described by Laguerre polynomials multiplied by a factor

that gives the confinement.

The antisymmetric configuration for the fieldBφ = B0 sin θ cos θ, produces similar

results to the previous case but the main difference is that the slow magnetic Rossby

waves are absent. Also, magnetic Rossby waves become unstable for certain values of

α andǫ, then become real again by interacting with another mode andso on, weaving a

net. On the other hand, whenα is large, there is a critical layer which absorbs the MIG

waves.
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Chapter 1

Introduction

Wave motion occurs in a great variety of physical phenomena,such as the study

earthquakes, propagation of light and acoustics. The mathematical theory of wave motion

is very general, and can be applied in many different physical situations.

There are two important constants for all the waves, the amplitude and the frequency,

or equivalently the wavelength (Hecht and Zajac, 1974). Thefrequency is the number

of cycles per unit of time, this quantity is critical to classify the wave. Waves are often

described as fast and slow, and we can base this distinction on the magnitudes of the

frequency. The relative sign of the frequency and the wavenumber also describes the

direction of propagation and the frequency also affects thegroup velocity, which is the

speed at which energy is propagated. It remains constant when the wave is reflected or

transmitted in a new media. Also it is related to the period ofthe wave that is the time

elapsed between two consecutive oscillations, by a simple formula.

Knowing how a wave propagates through a medium can give valuable information about

the conditions in that media. For example, the microscopic structure of a crystalline

material can be deduced by measuring wave properties of the light beams passing through

it (Hecht and Zajac, 1974). The measurement of its velocity is associated with the
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composition and elastic properties of the medium in which itpropagates, for example the

velocity of the seismic waves is proportional to the densityof the inner Earth (Fowler,

1990). The reflection of sound waves in sonar devices can drawa map of the sea floor

(Kinsler et al., 1999). These are classical examples of wavephysics. Our main concern

is waves in fluids.

The waves in fluid are known as mechanical waves; the perturbation cannot exist without

material media. They are in themselves a vast field of study for their behaviours and

the physical laws that govern them (Whitham, 2011) but a deepcomprehension of them

could help us to study the medium in which they develop.

A detailed study of magnetohydrodynamic (MHD) waves in perfectly conducting fluids is

presented in this thesis: the complete set of solutions to the system of equations for a thin

shell of rotating fluid. Maybe the study of MHD waves in stars and planetary interiors

can give an insight about their composition and dynamics: comparing the observations

of waves in the stellar tachoclines or inner Earth with our results, we can infer if there

are stratified layers or have an estimation of the magnitude of the magnetic field.

1.1 Geophysical and Astrophysical Motivations

The effect of the gravitational force on a fluid produces vertical changes in density, so the

density decreases as the height increases (Hines, 1972). This density variation could be

present as a continuous transition or it can lead to the formation of layers with different

properties like temperature, composition and pressure. Such layers are called stratified

layers.

When the structure of a layer is that lower densities are at the top and the higher densities

are below, the distribution is said to be stably stratified (e.g. Cushman-Roisin and

Beckers, 2011). Stable stratification occurs frequently innature and creates different
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layers, each region having particular properties. For example, the Earth’s atmosphere is

considered stably stratified except for a thin layer which isin contact with the Earth’s

surface, (Nappo, 2013). The stratosphere is a stably stratified layer located in heights

15−50 km above the surface. In the ocean, the density stratification defines three layers.

A surface layer, a pycnocline layer, sometimes called the thermocline (for low latitudes)

and a deep layer (Pinet, 2012). The thermocline is a region ofsharp transition between

less dense warm water and deeper denser cold water.

Stratification can be measured by a physical parameter called the Brunt-Väisälä

frequency or buoyancy frequency (e.g. Melchior, 2013), at which a small element of fluid

oscillates when it is perturbed. There is a relation betweenthe Brunt-Väisälä frequency

and the adiabatic gradient of temperature. If the temperature gradient is subadiabatic, the

layer is stable and there is a Brunt-Väisälä frequency. If the layer is superadiabatic, it is

not stably stratified and convection occurs.

Additionally, the rotation of the system can lead to other types of waves (e.g. Lighthill,

2001). In addition to gravity waves, rotation leads to Kelvin waves and Rossby waves,

which are related to significant geophysical and astrophysical phenomena. It is also

possible for magnetic field to be important in generating newtypes of waves, for example

in the solar interior or the liquid iron core of the Earth. We then expect to find Alfvén

waves, which are waves which owe their existence to the presence of the magnetic field.

In atmospheric dynamics, meridional flow fluctuations are associated with mixed Rossby

gravity waves (Yanai et al., 1968) and other zonal fluctuations are associated with

a Kelvin mode in the equatorial stratosphere (Wallace and Kousky, 1968, Holton

and Lindzen, 1968). In addition, these mixed Rossby gravitywaves are a potential

explanation for the Quasi-Biennal Oscillation, in which the zonal wind alternates

direction between eastward and westward propagation, witha period of∼ 22 − 28

months, in the equatorial region. Also, the existence of Equatorial Rossby waves has

been inferred from the study of the westward propagating ”cyclone pairs” (Kiladis et al.,
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2009).

There are many representative cases of the influence of thesewaves in the weather

and also climate. Gravity waves in the upper atmosphere are an important part of the

dynamics of the system. Mountain waves produced by the perturbation of the horizontal

wind flow have been recognized as gravity waves (Hines, 1972).

In addition to these atmospheric and other oceanic applications, waves play an important

role in astrophysical and geophysical systems. Our particular interest extends to the

stably stratified layer in the Earth at the Core Mantle Boundary (CMB) and the thin layer

in the Sun which is called the solar tachocline.

Helioseismic results suggests that there is a thin layer of transition around the radiative

zone and the convection region. This layer has a sharp changein the rotation rate; the

outer part rotates differentially with the poles rotating slowly and the equator faster, see

figure 1.1. The radiative interior has a solid-body rotationrate (Miesch, 2005). According

to Charbonneau et al. (1999), the location of the tachoclineis 0.693± 0.003R⊙ near the

equator and0.717 ± 0.003R⊙ at a latitude of60◦ (Charbonneau et al., 1999). Their

estimations for the width are0.039 ± 0.013R⊙ at the equator and0.042 ± 0.013R⊙ at a

latitude of60◦, whereR⊙ is the Sun’s radius. These estimates are not very certain andthe

tachocline might be thinner than this. It has been suggestedthat the movement of plasma

acting in this layer contributes to generating the solar magnetic field.

The solar magnetic field has a complex behaviour but shows some patterns. The sunspot

cycle is the most common pattern of solar activity, which emerges at a certain band of

latitudes and moves to the equator, then the polarity of the global field reverses and the

patterns emerge again to complete a cycle in22 years. It is known that the solar activity

is maximum when there is a greater number of sunspots and minimum when there is less.

The solar activity also presents other cycles such as the Gleissberg cycles of60 ∼ 150

years (Ma, 2009) or for instance, Rieger type periodicitiesof hundreds of years.
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On the largest scales, during solar minimum, the axisymmetric component of the poloidal

field is mainly dipolar with a magnitude of10G for the solar photosphere. As the

cycle continues the field shows multipolar components and becomes more complicated

(Miesch, 2005).

Moving on now to consider the magnetic field in the tachocline, many researchers

assume that the amplitude of the toroidal component is largewith respect to the poloidal

component (Tobias, 2005). According to many authors it could be a purely toroidal

magnetic field (Gilman, 2000, Zaqarashvili et al., 2007). Despite the fact that part of the

Figure 1.1: At the left, inner structure of the Sun, the tachocline is thetransition region

separating the radiative zone and the convective region. Courtesy: Marshall Space Flight

Centre/NASA. http://solarscience.msfc.nasa.gov. At theright, rotation rate varying with the

solar radius, for different latitudes, the tachocline is located about∼ 0.7R⊙. National Solar

Observatory.http://gong.nso.edu/gallery/disk2k10/data/resource/ torsional/torsional.html.

tachocline experiences differential rotation (Schou et al., 1998), see figure 1.1, for our

purpose of studying waves in general, we consider that the layer has constant solid body

rotation, with a rotation rate of∼ 27 days (Hughes et al., 2007).

It seems possible that if a spectrum of oscillations arise inthe tachocline, these waves
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can describe some solar activity (Spiegel, 1994). Observations from satellites of Coronal

Bright Points for tracking magnetic activity of the Sun haverevealed certain wave

patterns with westward phase speeds of3.25±2.25m/s and2.65±1.60m/s in the north

and south hemispheres. These waves have eastward group speeds of 24.4 ± 15.3m/s

in the southern hemisphere and23.8 ± 20.8m/s in the northern hemisphere, (McIntosh

et al., 2017). It is believed that this is a kind of magnetic Rossby wave arising from the

rotation and the toroidal field of the tachocline, see figure 1.2.

Figure 1.2: Illustration of solar activity: average of coronal bright points density at given

longitude of72◦ (From McIntosh et al. (2017)).

Other solar type stars will have a tachocline as well, and in all of them rotation rate and

magnetic strength will differ from that in the Sun (Oláh et al., 2009, Hughes et al., 2007).

The study of solar type stars could clarify the relationshipbetween the wave generation

in the tachocline and the periodicities of the magnetic fieldof the sun. It is therefore

of interest to consider a wide range of possible parameters for the rotation rate and the

magnetic field, not just specific values.

Let us now consider instability. The interest for investigating instability in MHD

problems has grown in recent years, due to the discovery of countless relations between

unstable modes and certain natural phenomena, for instancebursts of gamma and x-rays
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in the sun or neutron stars (Gilman and Dikpati, 2002). Some authors also suggest that

reversals of the Earth’s magnetic field could be activated bymagnetic instabilities. It

is also possible that gravitational instability in giant molecular clouds could initiate star

formation e.g. Rüdiger and Hollerbach (2006).

Also, there is another motivation for this thesis: to study the stratified layer at the top

of the outer core of the Earth. The Earth’s core has a liquid exterior and solid interior.

The outer core has a smaller density than the inner core and iscomposed mainly of iron

and a few percent of light elements, but the inner core is composed mostly of pure iron

(Karato, 2003).

The geomagnetic field is generated in the outer core by a dynamo effect (e.g. Jones 2011).

The structure of the field is predominantly dipolar. However, it has been suggested that

the magnitude of the toroidal field in the core may be as much as2 × 10−2T , which

is considered stronger than the poloidal component of magnitude4 × 10−4T (Melchior,

2013). The fact that the toroidal field may be stronger than the poloidal field has relevance

for this research.

The magnetic field of the Earth undergoes variations. Some changes are due to the

interactions between the solar wind and the magnetosphere,which are fast and last

seconds. On the other hand, the time elapsed between polarity reversals, which are

inversions of the polarity of the field, can take millions of years to occur. Also, there

is the secular variation, which occurs over periods of time from years to centuries, like

westward drift, geomagnetic jerks, the growth of the South Atlantic anomaly, and the

anticyclonic motions of field features in the North pole (Finlay et al., 2010). In figure

1.3, the radial component of the core’s field is shown, where intense spots are located

near the equator and propagate westward (Finlay et al., 2010).

Braginsky (1998) suggested the existence of a stable stratified layer at the top of

the core, see figure 1.4, where many kinds of waves could arise, analogous to those

which propagate in the ocean of the Earth. Then, the slow oscillations produced by
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Figure 1.3: Radial component of the core magnetic field. Note how flux spots in the

positions A, B, C, D and E are slightly moved toward the west with respect to the 1980’s

plot. Reproduced from Jackson (2003).

an equilibrium between magnetic, Archimedean and Coriolisforces, called magnetic

Rossby waves are considered to be related to short time-scale geomagnetic secular

variation, length of day variation and oscillation of the pole position.

Other theoretical models describing the movement of fluids in the Earth’s core establish

that waves can be responsible for short term secular variation in the geomagnetic field

(Finlay et al., 2010, Hori et al., 2015). Bergman (1993) proposed a thin shell model,

and solved the Laplace tidal equations modified by the Lorentz force for a dipolar field,

using theβ-plane approximation. He suggested that solutions with long periods such as

magnetic Rossby waves, are a plausible cause for secular variation.

Recently, seismic evidence has shown (Helffrich and Kaneshima, 2010), a reduction in

the outer-core wave speeds of0.3% relative to the expected speed at 60 km into the outer

core, which slowly recovers the expected value at a depth of 300 km. These differences

reflect the presence of a layer of 300 km in thickness at the topof the core: a stratified
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Figure 1.4: Inner structure of the Earth. It has been suggested that there is a stably stratified

layer at the top of the core.

layer.

1.2 Modelling Approaches

The aim of this thesis is the study of MHD waves in stably stratified layers, describing

the solutions with generality for any physical system. Then, we can analyse more deeply

some special cases that could represent the tachocline of the Sun or the stably stratified

layer at the top of the Earth’s core.

Our analysis starts from the shallow water approximation set of equations, for a fluid with

constant densityρ andΩ0 as the rotation rate of this system where the height of the fluid

is much less than the horizontal distances. As a result of this the vertical component of

the velocity will be less than the horizontal components, and the same will occur for the

vertical component of the magnetic field. In this case radialdisplacements do not appear

explicitly in the governing equations. Despite the simplicity of the shallow water model

it can be applied to many cases in oceanic and atmospheric fluids, where it is capable
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of describing important phenomena (Pedlosky, 2013). Longuet-Higgins (1968), in the

context of geophysical fluids, has solved the problem for theset of equations known as

“Laplace Tidal equations”.

We follow the MHD shallow water approximation proposed by Gilman (2000). He

considered thin layers of conducting fluid immersed in a toroidal magnetic field, and

used this model to research the dynamics of the solar tachocline (Gilman, 2000). Since

then the MHD shallow water model has been applied to the studyof Rossby and gravity

waves in the tachocline of the Sun (Zaqarashvili et al., 2007, 2009).

Several studies have provided important information on MHD“shallow water” waves.

Schecter et al. (2001) have found two kinds of waves: Alfvénwaves and “magneto-

gravity” modes in the context the solar tachocline, this MHDshallow water model

is developed in Cartesian coordinates for a rotating systemwith a constant toroidal

magnetic fieldB0. Other MHD shallow water approximations have taken into account

multiple layers (Hunter, 2015), yielding solitary and cnoidal waves.

Our results will be expressed in terms of the normalized frequency of waves:λ = ω/2Ω0

and some dimensionless parameters, whereΩ0 is the rotation rate of the system. These

include the magnetic parameterα, defined byα2 = B2
0/ρµ04Ω

2
0R

2
0, and the parameter

ǫ = 4Ω2
0R

2
0/gH0, for definition of symbols see table 1.1. The values of the parameters

are uncertain, but the order of magnitude can be calculated for stably stratified layers of

the Earth and Sun, using the physical constants in table 1.1.

The physical constants can vary with the position. In the solar tachocline the stratification

is high in the radiative zone and lower in the overshoot region. This must be common

in stars similar to the sun, with a stably stratified layer between the convection zone

and rigid body rotating region. This stably stratified layerchanges from adiabatic to

subadiabatic gradient of temperature. In the Earth’s core asmooth transition is expected

from convection to stable stratification, but this is very difficult to determine. For this

reason, we give a complete study of the solutions in a very large range for the parameters
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α andǫ. Therefore, these results must be interpreted with cautionwhen they are applied

to astrophysical context, because of the uncertainty of theparameters and the simplicity

of the model.

For the estimation of the parameters, we choose a constant gravitational acceleration and

the highest published values for the magnetic field. The values of density and gravity for

the Earth’s stratified layer come from PREM model (Dziewonski and Anderson, 1981).

Although, in the solar tachocline the value of the gravity isvalid for the radiative part

of the tachocline and changes abruptly in the overshoot part. Mak et al. (2016) has

suggested that the factor
√
gH0 could be calculated through the Brunt-Väisälä frequency,

as the fastest possible gravity waveNH1/π, whereH1 is the depth of the layer. Taking

N = 8 × 10−4s−1 at 0.7R⊙, the value of
√
gH0 is 16000m/s with a height equal to

H1 = 1 × 107m. Then the parameterǫ for the solar tachocline is0.03, as showed

in table 1.1. However, it is important to bear in mind that thevalue of the buoyancy

frequency varies across the tachocline and reduces to zero at the base of the convection

zone, (Hughes et al., 2007).

In the same way the velocity can be calculated for the stratified layer of the Earth
√
gH0 = 305m/s , takingH1 = 3 × 105m andN = 0.51mHz from Helffrich and

Kaneshima (2010), thenǫ = 2.7.

In table 1.1 the values ofǫ in blue color correspond to the calculation using the values

of g andH0 written in this table.

Based on this model and these parameters, we try to find a relation between our solutions

for the MHD shallow water system to some geophysical and astrophysical observations.

In the next chapter, we explain the mathematical details of the MHD shallow water

model.

Another significant aspect of the MHD waves is that instability could be present. In

stable equilibrium, a physical system tends to remain closeto the original state after

a perturbation. In unstable equilibrium, the system has a different response to small
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Table 1.1: Estimated values of fundamental parameters for the Earth and Sun. The numbers

for the tachocline with* have been taken from Tobias (2005) and ** corresponds to Hughes

et al. (2007).

Symbol Earth Sun

Density ρ 9.9× 103kg/m3 210kg/m3∗∗

Rotation rate Ω0 7.29× 10−5rad/s 2.7× 10−6∗∗rad/s

External radius of the layer R0 3.48× 106m 5× 108m

Magnetic field B0 2× 10−2T 10T ∗

Height of the layer H0 3× 105m 1× 107∗∗m

Gravitational acceleration g 10.68m/s2 540m/s2∗∗
Effective “gH0” gH0 9.4× 108m2/s2 4.7× 107m2/s2

Parameters
α 4× 10−4 0.2

ǫ 0.08-2.7 0.03-0.04

disturbances, moving away from the basic state.

In the present study, the variables of the system, velocities and magnetic field are

perturbed about a basic state by a small amount and the governing equations are

linearised. Then, we expect that the solutions are proportional to the factore−iωt, as

will be shown later. If the imaginary part of the frequencyωi > 0 is greater than zero,

the exponential factor tends to grow in amplitude, and the mode is unstable.

Next, we study the solutions in the space of parameters. For example, we have three

parameters: wave number (m), rotation rate (ǫ) and magnetic field amplitude (α), and by

varying these we try to obtain a critical value which sets theinstability (Chandrasekhar,

2013).

Numerous studies have attempted to describe instabilities. Malkus (1967) found

instabilities in the problem of a rotating sphere of conductive fluid, in a toroidal magnetic
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field B0 sin θ for the azimuthal wave numberm = 1. He estimated the minimum value

of the magnetic parameter equivalent toα ≥ 0.5 for instability.

A significant analysis and discussion on the subject was presented by Tayler (1973). He

obtained conditions for the stability of a non rotating starcontaining a toroidal magnetic

field Bφ(r, z) and demonstrated that a large class of configurations are unstable and the

instability depends on the topology of the field rather than in its strength. The effect of

the rotation has been considered in a later publication (Pitts and Tayler, 1985), where

instabilities exist form = 1 and other conditions of the problem, see also Spruit (1999).

Gilman and Fox (1997) studied the instability of latitudinal differential rotation and

toroidal magnetic field in the formB0 sin θ. They found instabilities only for the wave

numberm = 1, for almost any magnitude of the toroidal field, although in this work they

suggested that there is no instability when differential rotation is absent.

In a later study, Gilman and Dikpati (2002) studied MHD Shallow Water systems with

toroidal fields and differential rotation for the solar tachocline. They found mainly that

the modem = 1 is the preference for instabilities; nevertheless form = 2 in the

presence of weak fields, unstable modes exist. When the magnetic field is strong and

m = 1 the growth rates are independent of the “gravity parameter”(we call it ǫ). In their

research, they showed that the existence of complex modes implies transport of angular

momentum. For the two dimensional problem of an electrically conducting and viscous

fluid in a spherical shell, Sharif and Jones (2005) proposed the azimuthal magnetic field

B0 sin θ cos θ, under differential rotation and taking into account diffusion. They found

unstable modes form = 1 andm = 2, and the modes can also be unstable under solid

body rotation. In addition, they found that there is a value of the amplitude of the field

(α = 0.5) where the curves for the growth rates start having a different behaviour.

A criterion for instabilities was described by Cally (2003)in a 3D Boussinesq thin layer

approximation for toroidal fields in the Sun. It establishesunstable waves occur if the

Alfvén frequency exceeds the rotational frequency and symmetric growing modes are
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confined at the poles form = 1. He also mentioned that including diffusion in the

problem does not suppress the instability.

In a later work, Cally et al. (2008), they consider the instability for the axisymmetric

mode (m = 0) with a 3D Boussinesq model for spherical shell for banded magnetic

profiles and differential rotation. Instabilities are found for a high radial wavenumber

and also the modes are confined at the poles.

Our starting point in chapter 2 is the description of the set of equations for the thin layer

model for a toroidal field with equatorial symmetry:B0 sin θ, in spherical geometry. We

also present an eigenvalue numerical method for solving thesystem of equations. As an

alternative, ordinary differential equation formulations are also developed in this chapter.

Chapter 3 is a summary of the hydrodynamic case, studied previously by other authors

(Longuet-Higgins, 1968, Matsuno, 1966). In chapter 4, we solve the MHD Shallow

water model numerically. In chapter 5, the asymptotic theory for the different waves is

explained in the limiting cases of large and small parameters. Some unstable modes were

found, and, these solutions are described extensively in chapter 6. Chapter 7 is related

to solutions and considerations for the problem of the antisymmetric fieldB0 cos θ sin θ.

We discuss the main consequences of this work in chapter 8.
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Chapter 2

System of Equations for the Shallow

Water Approximation in MHD

2.1 Magnetohydrodynamic “Shallow Water”

Approximation

The shallow water approximation is a model extensively applied in the study of fluids in

the atmosphere and the ocean. Although, the model is straightforward, it is capable of

describing relevant phenomena in geophysics (Pedlosky, 2013). The classical shallow

water approximation of geophysical fluid dynamics describes a thin layer of fluid in

hydrostatic balance, with a rigid surface in the lower boundary and a free surface in

the upper boundary.

In 2000, Gilman introduced a magnetohydrodynamic set of equations for a shallow water

system of conductive fluid immersed in a strong toroidal magnetic field (Gilman, 2000).

Since then, the applications of the shallow water model havebeen extended to the inner

planets and stars (Zaqarashvili et al., 2010a,b).

In this section we will make a formal derivation of the magnetohydrodynamic shallow
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water equations, and establish the parameters and validityof this model.

2.2 Governing Equations

We consider a thin layer of fluid, with constant densityρ and heightH = H0 + h, where

H0 is the average height andh(x, y, t) is the deviation independent ofz (vertical). The

vertical length scaleH is much less than the horizontal length scale,L, so it can be

expressed by

H/L ≪ 1.

The equation of continuity for an incompressible fluid results in

∇ · ~v = 0, ⇒ ∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0.

Using the lengths scales of the thin layer, it follows that the vertical velocity is smaller

than the horizontal components

w ≪ u, v.

In the same way, the magnetic field’s components satisfy the equation∇ · ~B = 0, stating

that the vertical component of the field is small compared with the horizontal components

bz ≪ bx, by.

The solar magnetic field in the tachocline can be considered mainly toroidal (Tobias,

2005). Despite the Earth’s magnetic field having a dipolar component in the core, where

the stably stratified layer is, the toroidal field component is much stronger (Melchior,

2013).

In addition, the magnetic field and the velocity are also independent ofz (Gilman, 2000).

Also if the fluid is perfectly conducting, we can neglect the diffusion terms.

We suppose that the fluid above the layer has negligible density (ρ
′ ≈ 0) compared to

our layer density, as illustrated in figure 2.1 and at the bottom there is a rigid surface. If
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we would like to consider a layer of fluid with densityρ0 on top of our stratified layer,

similar to the layers in the Earth’s ocean, the governing equations remain the same but

this active layer could be taking into account through the concept of “reduced gravity”

(Vallis, 2006).

H
0

h

w

v

u

Figure 2.1: Shallow water system: the velocity field is shown,w is the vertical velocity,u

andv are the horizontal components. The height of the layer isH = H0 + h, whereH0 is

the average height while its deviation ish.

2.2.1 Induction Equation

The induction equation can be derived using Maxwell’s equation and Ohm’s law

(Thompson, 2006). Without considering diffusion and neglecting electrostatic forces,

the equation takes the form
∂ ~B

∂t
= ∇× (~v × ~B), (2.1)

where~B = (Bx, By, Bz) is the magnetic field. Using the vectorial identity∇× (~a×~b) =

(~b ·∇)~a−~b(∇·~a)− (~a ·∇)~b+~a(∇·~b), we can change the right hand side of the equation

∂ ~B

∂t
= ( ~B · ∇)~v − ~B(∇ · ~v)− (~v · ∇) ~B + ~v(∇ · ~B). (2.2)
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Using the Gauss Law for magnetism,∇ · ~B = 0 (Reitz et al., 2008), and the condition

for incompressible fluid∇ · ~v = 0, we have

∂ ~B

∂t
= ( ~B · ∇)~v − (~v · ∇) ~B. (2.3)

The components of the velocity and the magnetic field are independent ofz thus the terms

d~v/dz andd ~B/dz are zero, the induction equation for the horizontal components of the

velocity and the magnetic field, can be written as

∂ ~BH

∂t
+ (~VH · ∇H) ~BH = ( ~BH · ∇H)~VH . (2.4)

where~VH and~BH are the horizontal components of the velocity and the field respectively,

likewise,∇H is the horizontal gradient.

2.2.2 Momentum Equation

Newton’s second law of motion for a conductive fluid can be written as

∂~v

∂t
+ (~v · ∇)~v + 2~Ω× ~v = −1

ρ
∇P − gk̂ +

1

ρµ0

(∇× ~B)× ~B. (2.5)

The term2~Ω×~v refers to the Coriolis force, introduced to take into account the effect of

the system’s rotation. The first term in the right hand side ofthe equation is the pressure

gradient, the second term is the gravity force and the last term is the Lorentz force,

diffusion is not considered here. Using vectorial identities, we can rewrite the Lorentz

force term, and the equation takes the form

∂~v

∂t
+ (~v · ∇)~v + 2~Ω× ~v = −1

ρ
∇P −∇

(

B2

2µ0ρ

)

+
1

ρµ0
( ~B · ∇) ~B − gk̂. (2.6)

Rearranging the last equation, we have:

∂~v

∂t
+ (~v · ∇)~v + 2~Ω× ~v = −∇

(

P

ρ
+

B2

2µ0ρ

)

+
1

ρµ0
( ~B · ∇) ~B − gk̂. (2.7)
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We assume that the density is constant, the fluid is incompressible.Analysing the vertical

component of the vectorial equation (2.7), we consider the velocity and the magnetic

field vertical components negligible. Then, this simplification leads to magnetostrophic

balance

0 = − ∂

∂z

(

P

ρ
+

B2

2µ0ρ

)

− g. (2.8)

Solving this differential equation by integration, the result is

P +
B2

2µ0
= −ρgz + P0, (2.9)

whereP0 is a constant. Gilman (2000) establishes that“the gas pressure is reduced

by the amount of the magnetic pressure there”, referring to the upper boundary, when

z = H, the total pressure isP + B2

2µ0
= 0, hence

P0 = ρgH.

Substituting this result into (2.9), we obtain

P +
B2

2µ0
= ρg(H − z). (2.10)

Hence, the horizontal pressure gradient can be written as

∇H

(

P +
B2

2µ0

)

= ρg∇HH. (2.11)

Taking the horizontal components of the momentum equation (2.7), the formula for the

shallow water approximation in magnetohydrodynamics willbe

∂~VH

∂t
+ (~VH · ∇H)~VH + 2~Ω× ~VH =

1

ρµ0
( ~BH · ∇H) ~BH − g∇HH, (2.12)

where~VH and ~BH refer to the horizontal components of the velocity and the magnetic

field, respectively.

In case we want to consider that on top of our stratified layer there is another layer of

densityρ0 not negligible then the boundary condition atz = H must be different. Then
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the hydrostatic and magnetic pressure equals the hydrostatic pressure of the fluid of the

upper layer, as follows

P +
B2

2µ0
= ρ0g(H1 −H), at z = H, (2.13)

whereH1 is the height of the upper layer and is a constant. Therefore the horizontal

gradient of pressure is represented by

∇H

(

P +
B2

2µ0

)

= ρg
′∇HH.

with g
′

as the reduced gravity defined by

g
′

=
ρ− ρ0

ρ
. (2.14)

We will take into account this effect through the calculation of the parameterǫ.

2.2.3 Equation of Conservation of Mass

The mass contained in a fluid column of heightH and cross sectionA is
∫

A
ρH dA. If

there is a net flux of fluid across the column, with an increase in the mass in the region,

the height of the column increases (Vallis, 2006).

Figure 2.2: Mass flux entering in a column of fluid of cross-sectional area~A and lateral area

~S.
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The mass flux entering the column is related to the derivativeof the mass in a given

volumeV

Fm = −
∫

ρ~v · d~S, (2.15)

where~S is the lateral area of the column. The element of area isHn̂ dl wheren̂ is a unit

vector perpendicular to the boundary pointing outwards, see figure 2.2 anddl is a line

element around the column. Then, the equation (2.15) becomes

Fm = −
∫

ρH~v · n̂ dl.

Using the divergence theorem, the last formula simplifies to

Fm = −
∫

A

∇ · (ρH~v) dA, (2.16)

where the integral is over the cross-sectional area of the column of fluid. The increase in

the height of the water column is given by

Fm =
d

dt

∫

V

ρ dV =
d

dt

∫

A

ρH dA =

∫

A

ρ
∂H

∂t
dA. (2.17)

Because of the conservation of mass, the equations (2.16) and (2.17) are equivalent, hence

∫

A

ρ
∂H

∂t
dA = −

∫

A

∇ · (ρH~v) dA. (2.18)

Rearranging the equation for constant density, we obtain

∫

A

∂H

∂t
+∇ · (H~v) dA = 0. (2.19)

For any arbitrary surface, the expression is

∂H

∂t
+∇H · (H~VH) = 0, (2.20)

As stated before, there is no dependence onz, then the differential operator simplifies to

the horizontal derivatives,∇H .
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2.2.4 Divergence Free Condition

The following is a brief description of one of the Maxwell’s equations, the divergence free

condition or Gauss’s law for magnetism which establishes a condition for the magnetic

field
∮

A

~B · d~S = 0,

which states that the magnetic flux in a closed surface is zero. The surface is depicted

in the figure 2.2. Then, the area elementd~S is Hn̂ dl (lateral area),̂n is a unitary vector

perpendicular to this surface anddl is a line element circumscribing the column,as shown

in the figure 2.2. As a result the integral around a curveC is
∫

C

H ~B · n̂ dl = 0. (2.21)

Using the divergence theorem
∫

C

H ~B · n̂ dl =

∫

A

∇ · (H ~B) dA = 0, (2.22)

becauseH andBz does not depend onz, we have
∫

A

∇H · (H ~BH) dA = 0. (2.23)

Therefore, the divergence free condition for this model is

∇H · (H ~BH) = 0. (2.24)

2.3 The Set of Equations and the Basic State

In summary, the equations for shallow water MHD are

∂ ~BH

∂t
+ (~VH · ∇H) ~BH = ( ~BH · ∇H)~VH , (2.25a)

∂~VH

∂t
+ (~VH · ∇H)~VH + 2Ω× ~VH =

1

µ0ρ
( ~BH · ∇H) ~BH − g∇HH, (2.25b)
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∂H

∂t
+∇H · (H~VH) = 0, (2.25c)

∇H · (H ~BH) = 0. (2.25d)

The set of equations will be developed in the following pagesfor spherical coordinates,

whereθ is the colatitude andφ is the longitude. There is no radial dependence, so the

system is2D.

The basic state can follow different configurations: the latitudinal dependence of the

magnetic field, a height dependent on the latitude, variableeffective gravity (Dikpati

et al., 2003, Dikpati and Gilman, 2001), mean zonal flows and stresses on the convection

regions.

Previous studies have analysed some basic states for waves and instabilities in the shallow

water model or the continuously stratified layer. Tayler (1973, 1980) and Pitts and Tayler

(1985) have established the conditions for stability for a continuously stratified layer

where the gravity and the pressure field depend on the position.

Rashid et al. (2008) have considered as the basic state, a zonal flow dependent of the

vertical coordinate that may be maintained by a latitudinaltemperature gradient and a

radial shear or thermal wind. The condition of magnetohydrostatic balance could be

mantained by imposing a zonal jet in the stably stratified layer (Rempel et al., 2000).

There are several options for choosing the basic state in theMHD shallow water

approximation, Zaqarashvili et al. (2007) consider an unperturbed toroidal magnetic field

~Bφ = B0 sin θêφ,

and its perturbation

~B′ = bθ êθ + bφêφ,

whereB0 is a constant.

We note that a toroidal field can be linked to a current, which we suppose closes outside

of the thin layer that is being modelled, but we do not discussthe currents here.
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The velocity perturbation corresponds to

~VH = uθêθ + uφêφ.

The perturbation of the layer thickness is

H = H0 + h(θ, φ, t),

and the basic stateH0 is constant, for the height field can be constant the magneticstress

term ( ~BH · ∇) ~BH in the momentum equation (2.25b) has to balance with an external

stress. Then theθ-component of (2.25b) requires the following basic state balance:

0 = − g

R0

dH0

dθ
−

cot θB2
φ

ρµ0R0
+ Fθ,

whereFθ is an external stress. So constantH0 implies non-zeroFθ.

Moreover, this basic state leads us to the possibility of finding analytic solutions in certain

limits.

2.4 Linearised Equations in Spherical Coordinates

We substitute the basic state of the height, the magnetic field and the velocity into the

equations (2.25a)-(2.25d), and linearise the system. Neglecting all the terms considered

small, the equations are therefore:

∂uθ

∂t
− 2Ω0 cos θuφ +

g

R0

∂h

∂θ
− Bφ

µ0ρR0 sin θ

∂bθ
∂φ

+ 2
Bφ

µ0ρR0

cos θ

sin θ
bφ = 0, (2.26a)

∂uφ

∂t
+2Ω0 cos θuθ+

g

R0 sin θ

∂h

∂φ
− bθ
µ0ρR0

∂Bφ

∂θ
− Bφ

µ0ρR0 sin θ

∂bφ
∂φ

− Bφ

µ0ρR0

cos θ

sin θ
bθ = 0,

(2.26b)
∂h

∂t
+

H0

R0 sin θ

∂

∂θ
(sin θuθ) +

H0

R0 sin θ

∂uφ

∂φ
= 0, (2.26c)

∂bθ
∂t

− Bφ

R0 sin θ

∂uθ

∂φ
= 0, (2.26d)



Chapter 2. System of Equations for the Shallow Water Approximation in MHD 25

∂bφ
∂t

+
1

R0

∂

∂θ
(uθBφ) =

Bφ

R0 sin θ

{

∂

∂θ
(uθ sin θ) +

∂uφ

∂φ

}

. (2.26e)

We propose solutions of the formeimφ−iωt, t is the time,ω is the frequency of the

oscillation andm is the azimuthal wave number. It leads to a set of five coupled ordinary

differential equations withθ as the independent variable:

−iωûθ − 2Ω0 cos θûφ +
g

R0

sin θ
∂h

∂θ
− imB0

µ0ρRo

b̂θ +
2B0

µ0ρRo

cos θb̂φ = 0, (2.27a)

−iωûφ + 2Ω0 cos θûθ + im
g

R0
h− imB0

µ0ρRo
b̂φ −

2B0

µ0ρRo
cos θb̂θ = 0, (2.27b)

−iω sin2 θh +
H0

R0

sin θ
∂ûθ

∂θ
+ im

H0

Ro

ûφ = 0, (2.27c)

iωb̂θ + im
B0

R0
ûθ = 0, (2.27d)

iωb̂φ + im
B0

R0
ûφ = 0, (2.27e)

whereûθ , ûφ, h, b̂θ andb̂φ are the corresponding amplitudes of these new variables:

ûθ = sin θuθ, ûφ = sin θuφ,

b̂θ = sin θbθ and b̂φ = sin θbφ.

We now change the variableθ to µ = cos θ and introduce the differential operatorD =

− sin θ∂/∂θ = (1− µ2)∂/∂µ.

We also define the Alfvén velocityvA throughv2A = B2
0/µ0ρ.

Our results will be given in terms of the dimensionless parameters

ǫ =
4Ω2

0R
2
0

gH0

, and α2 =
v2A

4Ω2
0R

2
0

,

and a dimensionless frequency viaλ = ω/2Ω0. Additionally, the dimensionless variables

are

ũθ =
iûθ

2Ω0R0

, ũφ =
ûφ

2Ω0R0

, (2.28)

η =
gh

4Ω2
0R

2
0

, b̂θ = iB0b̃θ, b̂φ = B0b̃φ.
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Then, the equations take the form

λũθ + µũφ +Dη +mα2b̃θ − 2α2µb̃φ = 0, (2.29a)

λũφ + µũθ −mη +mα2b̃φ − 2α2µb̃θ = 0, (2.29b)

λǫ(1 − µ2)η −Dũθ −mũφ = 0, (2.29c)

λb̃θ +mũθ = 0, (2.29d)

λb̃φ +mũφ = 0. (2.29e)

Equation (2.25d) for the divergence free condition can be useful, the linearised form is

mǫ(1 − µ2)η − (1− µ2)
∂b̃θ
∂µ

+mb̃φ = 0. (2.30)

In order to solve we now expand each of the dependent variables as a sum of associated

Legendre Polynomials, remembering that each expansion must haven ≥ m because the

polynomials are not defined forn < m,

ũθ =
∞
∑

n=m

Am
n P

m
n (µ), b̃θ =

∞
∑

n=m

Bm
n Pm

n (µ),

ũφ =

∞
∑

n=m

Cm
n Pm

n (µ), b̃φ =

∞
∑

n=m

Dm
n P

m
n (µ), η =

∞
∑

n=m

Em
n Pm

n (µ).

Even though these are infinite expansions, for the purposes of the numerical calculations

expansions will be truncated atn = N for all m, whereN is the truncation number

and for our purposesN is large compared tom. We will make use of two properties of

associated Legendre polynomials

µPm
n =

(n+m)

(2n + 1)
Pm
n−1 +

(n−m+ 1)

(2n+ 1)
Pm
n+1,

DPm
n =

(n+ 1)(n+m)

(2n+ 1)
Pm
n−1 −

n(n−m+ 1)

(2n+ 1)
Pm
n+1.

Substituting the expansions of the dependent variables into the equations (2.29a), (2.29b),

(2.29c), (2.29d) and (2.29e), and then using the propertiesof the associated Legendre
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Polynomials, we obtain a set of algebraic equations. In eachequation we must set

the coefficient ofPm
n (µ) to zero, and we then obtain the following equations for the

coefficients in our expansion,Am
n , Bm

n , Cm
n , Dm

n , Em
n :

−λAm
n = mα2Bm

n − qn−1C
m
n−1 + 2α2qn−1D

m
n−1 + (n− 1)qn−1E

m
n−1

− pn+1C
m
n+1 + 2α2pn+1D

m
n+1 − (n+ 2)pn+1E

m
n+1, (2.31a)

λCm
n = sEm

n −mα2Dm
n + qn−1A

m
n−1

− 2α2qn−1B
m
n−1 − 2α2pn+1B

m
n+1 + pn+1A

m
n+1, (2.31b)

λ{ǫ(1− pnqn−1 − qnpn+1)E
m
n − ǫpn+2pn+1E

m
n+2 − ǫqn−1qn−2E

m
n−2}

= sCs
n − (n+ 2)pn+1A

m
n+1 + (n− 1)qn−1A

m
n−1, (2.31c)

λBm
n = −mAm

n , (2.31d)

λDm
n = −mCm

n , (2.31e)

where, qn = (n−m+ 1)/(2n+ 1) and pn = (n +m)/(2n+ 1). Because the

associated Legendre polynomials are symmetric about the equator ifn−m is even, and

antisymmetric ifn − m is odd, there are two independent set of equations of different

parity. The coefficientsAm, Bm, Cm+1, Dm+1, Em+1, Am+2, Bm+2, Cm+3, Dm+3, Em+3,

Am+4, Bm+4, Cm+5, Dm+5, Em+5.... are related to each other, while the othersAm+1,

Bm+1, Cm, Dm, Em, Am+3, Bm+3, Cm+2, Dm+2, Em+2, Am+5, Bm+5, Cm+4, Dm+4,

Em+4.... form another independent set of equations. We solve each set separately using

a Matlab eigenvalue and eigenvector solver, designed to solve the system of equations

A~v = λB~v, with a QZ method for the computation of the generalized eigenvalues.

The algorithm for the QZ method is based on the theorem that establishes that there

are unitary matricesQ andZ whereQAZ andQBZ are both upper triangular. The

eigenvalue problemsQAZ~y = λQBZ~y andA~v = λB~v are unitary equivalent. The
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eigenvalues are the same for both problems and the eigenvectors are related by~v = Z~y

(Moler and Stewart, 1973).

The method has four steps, briefly described as follows (Kaufman, 1977):

1. The matrixA is reduced to upper Hessenberg form (aij = 0 for i > j + 1) andB

is reduced to upper triangular form (bij = 0 for i > j) simultaneously.

2. The matrixA is reduced to a quasi-triangular form but maintainingB triangular.

3. The quasitriangular matrixA is reduced to a triangular matrix and the eigenvalues

are extracted, using the fact that the eigenvalues of a triangular matrix are the

elements of the diagonal.

4. Determining the eigenvector of the triangular matrices and return to the original

system.

The eigenvalues of the original problem are calculated dividingαi andβi, the diagonal

elements of the triangular matricesQAZ and QBZ with λi = αi/βi. With this

algorithm is not necessary to invert the matrixB .

2.4.1 First System of Equations

The first system of equation is obtained on rearranging the equations for theAm, Bm,

Cm+1, Dm+1, Em+1 ..., coefficients. In this set, the solutions forũθ andb̃θ are symmetric

with respect to the equator but the eigenfunctions forũφ, b̃φ andη are antisymmetric.

These modes are known as sinuous or kink modes since fluid willflow northwards at

the equator in some locations and southward in others. Then the equations (2.31) are

rewritten as

λBm
n = −mAm

n , (2.32a)

λDm
n+1 = −mCm

n+1, (2.32b)
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−λAm
n = mα2Bm

n − qn−1C
m
n−1 + 2α2qn−1D

m
n−1 + (n− 1)qn−1E

m
n−1

− pn+1C
m
n+1 + 2α2pn+1D

m
n+1 − (n+ 2)pn+1E

m
n+1, (2.32c)

λCm
n+1 = sEm

n+1 −mα2Dm
n+1 + qnA

m
n

− 2α2qnB
m
n − 2α2pn+2B

m
n+2 + pn+2A

m
n+2, (2.32d)

λ{ǫ(1− pn+1qn − qn+1pn+2)E
m
n+1 − ǫpn+3pn+2E

m
n+3 − ǫqnqn−1E

m
n−1}

= sCm
n+1 − (n + 3)pn+2A

m
n+2 + (n)qnA

m
n , (2.32e)

wheren = m,m+ 2, m+ 4, m+ 6, ....

2.4.2 Second System of Equations

On the other hand, the second system of equation is obtained when we rearrange

the equations for the other parity,Am+1, Bm+1, Cm, Dm, Em.... In this case the

eigenfunctions for̃uθ and b̃θ are antisymmetric and̃uφ, b̃φ and η are symmetric with

respect to the equator. These modes are called varicose or sausage modes. Then the

equations (2.31) are rewritten as

λBm
n+1 = −mAm

n+1, (2.33a)

λDm
n = −mCm

n , (2.33b)

−λAm
n+1 = mα2Bm

n+1 − qnC
m
n + 2α2qnD

m
n + (n)qnE

m
n

− pn+2C
m
n+2 + 2α2pn+2D

m
n+2 − (n + 3)pn+2E

m
n+2, (2.33c)

λCm
n = sEm

n −mα2Dm
n + qn−1A

m
n−1

− 2α2qn−1B
m
n−1 − 2α2pn+1B

m
n+1 + pn+1A

m
n+1, (2.33d)
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λ{ǫ(1− pnqn−1 − qnpn+1)E
m
n − ǫpn+2pn+1E

m
n+2 − ǫqn−1qn−2E

m
n−2}

= mCm
n − (n + 2)pn+1A

m
n+1 + (n− 1)qn−1A

m
n−1, (2.33e)

wheren = m,m+ 2, m+ 4, m+ 6, .....

With regard to the validity of the solutions, we perform a test to ensure that only lower

degree eigenfunctions will be chosen. This means that the expansions of the Associated

Legendre Polynomials will not be affected by the truncationnumberN , because the

coefficients of high degree are smaller than those of lower degree. We measure the ratio

between the sum of the first half of the square of the coefficients and the second half

Ratio =

∑N/2
n=m(A

m
n )

2

∑N
n=N/2+1(A

m
n )

2
. (2.34)

For a given eigenvalue, if the ratio is large, it means that the solution has a lower degree

and it is valid. If the ratio is small (< 103), the solution is discarded.

2.5 The Normalization Constant

A detailed description of the conservation of energy for theset of equations is given in the

following section. First, we analyse the general conservation law for the special magnetic

field configurationBφ = B0 sin θ. Then we substitute the solutions, which are associated

Legendre Polynomial expansions multiplied by a constant into the energy expression,

and try to find a value of the constant for a special definition of energy. This value of the

constant is our normalization quantity.

The purpose of normalization is to make the total energy equal to a constant and from the

expression of energy we can infer if instability is present.

Let us now multiply the equation (2.26a) byuθ.

uθ
∂uθ

∂t
− 2Ω0 cos θuθuφ +

g

Ro
uθ

∂h

∂θ
− B0

µ0ρRo
uθ

∂bθ
∂φ

+
2B0

µ0ρRo
cos θuθbφ = 0. (2.35)
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In addition, we multiply the equation (2.26b) byuφ

uφ
∂uφ

∂t
+2Ω0 cos θuφuθ+

g

Ro sin θ
uφ

∂h

∂φ
− B0

µ0ρRo
uφ

∂bφ
∂φ

− 2B0

µ0ρRo
cos θuφbθ = 0. (2.36)

Adding these two equations gives

1

2

∂

∂t
(u2

θ + u2
φ) +

g

Ro

uθ
∂h

∂θ
+

g

Ro sin θ
uφ

∂h

∂φ
− B0

µ0ρRo

uθ
∂bθ
∂φ

− B0

µ0ρRo

uφ
∂bφ
∂φ

− 2B0

µ0ρRo
cos θuφbθ +

2B0

µ0ρRo
cos θuθbφ = 0. (2.37)

Multiply the equations (2.26d) and (2.26e) bybθ/µ0ρ andbφ/µ0ρ respectively

1

µ0ρ

∂

∂t

b2θ
2
− B0

µ0ρRo

bθ
∂uθ

∂φ
= 0, (2.38)

1

µ0ρ

∂

∂t

b2φ
2

− B0

µ0ρRo
bφ
∂uφ

∂φ
= 0. (2.39)

Adding equations (2.37), (2.38) and (2.39), we obtain

1

2

∂

∂t
(u2

θ + u2
φ +

b2φ
µ0ρ

+
b2θ
µ0ρ

) +
g

Ro

uθ
∂h

∂θ
+

g

Ro sin θ
uφ

∂h

∂φ

− B0

µ0ρRo

∂

∂φ
(uθbθ)−

B0

µ0ρRo

∂

∂φ
(uφbφ) +

2B0

µ0ρRo
cos θ(uθbφ − uφbθ) = 0. (2.40)

Multiplying the equation (2.40) byH0 yields

H0

2

∂

∂t
(u2

θ + u2
φ +

b2φ
µ0ρ

+
b2θ
µ0ρ

) +
gH0

Ro

uθ
∂h

∂θ
+

gH0

Ro sin θ
uφ

∂h

∂φ

− B0H0

µ0ρRo

∂

∂φ
(uθbθ)−

B0H0

µ0ρRo

∂

∂φ
(uφbφ) +

2B0H0

µ0ρRo
cos θ(uθbφ − uφbθ) = 0. (2.41)

Multiplying the equation (2.26c) bygh

g

2

∂h2

∂t
+

gH0

Ro sin θ
h
∂(sin θuθ)

∂θ
+

gH0

Ro sin θ
h
∂uφ

∂φ
= 0. (2.42)

Adding equations (2.41) and (2.42), we obtain

∂

∂t

{

H0

2
(u2

θ + u2
φ +

b2φ
µ0ρ

+
b2θ
µ0ρ

) +
g

2
h2

}

+
gH0

Ro sin θ

∂

∂θ
(sin θuθh) +

gH0

Ro sin θ

∂

∂φ
(uφh)

− B0H0

µ0ρRo

∂

∂φ
(uθbθ)−

B0H0

µ0ρRo

∂

∂φ
(uφbφ) +

2B0H0

µ0ρRo
cos θ(uθbφ − uφbθ) = 0.
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The terms with velocity and height can be arranged in a divergence

∂

∂t

{

H0

2
(u2

θ + u2
φ +

b2φ
µ0ρ

+
b2θ
µ0ρ

) +
g

2
h2

}

+ gH0∇ · (~uh)

− B0H0

µ0ρRo

∂

∂φ
(uθbθ)−

B0H0

µ0ρRo

∂

∂φ
(uφbφ) +

2B0H0

µ0ρRo
cos θ(uθbφ − uφbθ) = 0. (2.43)

With respect to the above equations, they are related to the energy per mass unit. Let now

us consider the total energy which could be calculated by multiplying the last equation

by the constant densityρ andintegrating overφ andθ:
∫ ∫

∂

∂t

{ρH0

2
(u2

θ + u2
φ +

b2φ
µ0ρ

+
b2θ
µ0ρ

) +
ρg

2
h2
}

dS +

∫ ∫

ρgH0∇ · (~uh) dS

−
∫ ∫

B0H0

µ0Ro

∂

∂φ
(~u ·~b)dS +

∫ ∫

2B0H0

µ0Ro

cos θ(uθbφ − uφbθ) dS = 0.

(2.44)

The second integral is equal to zero,when integrating overφ because of the periodicity

and also overθ because of the boundary conditions at the poles
∫ ∫

ρgH0∇ · (~uh) dS =
ρgH0

R0

∫ 2π

0

∫ π

0

∂

∂θ
(sin θhuθ) +

∂huφ

∂φ
dθdφ = 0

The third one vanishes too when it is integrated overφ, because of the periodicity of the

solutions
∫ 2π

0

∫ π

0

∂

∂φ
(~u ·~b) sin θ dθdφ =

∫ π

0

{[~u ·~b]φ=2π − [~u ·~b]φ=0} sin θ dθ = 0.

Then, the equation (2.44) becomes
∫ ∫

∂

∂t

{ρH0

2
(u2

θ + u2
φ +

b2φ
µ0ρ

+
b2θ
µ0ρ

) +
ρg

2
h2
}

dS

+

∫ ∫

2B0H0

µ0Ro
cos θ(uθbφ − uφbθ) dS = 0. (2.45)

Performing a Fourier analysis for the equations (2.26d) and(2.26e), taking~b and ~u

proportional toeimφ−iωt with ω real, the case whenω is complex will be explained in

the section 2.5.1. Then we get:

bθ = −mB0

Roω
uθ and bφ = −mB0

Roω
uφ,
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also, we substitute into the fourth integral,and realise that the term(uθbφ − uφbθ) is zero.

The final equation represents the variation of the energy respect to time
∫ ∫

∂

∂t

{ρH0

2
(u2

θ + u2
φ +

b2φ
µ0ρ

+
b2θ
µ0ρ

) +
ρg

2
h2
}

dS = 0. (2.46)

This is a conservation law, for the system, therefore the total energy, is defined by

E =

∫ ∫
{

ρH0

2
(u2

θ + u2
φ +

b2φ
µ0ρ

+
b2θ
µ0ρ

) +
ρg

2
h2

}

dS. (2.47)

Turning now to the numerical calculation of the normalization function for the equations,

we return to the original variables (2.28) by

uθ = −2iΩ0R0ũθ

sin θ
, uφ =

2Ω0R0ũφ

sin θ
,

bθ =
iB0b̃θ
sin θ

, bφ =
B0b̃φ
sin θ

, h =
4Ω2

0R
2
0η

g
.

Alternatively the energy takes the form
∫ ∫

{

ρH04Ω
2
0R

2
o

2 sin2 θ
(ũ2

θ + ũ2
φ) +

ρH0B
2
0

2µ0ρ sin
2 θ

(b̃2φ + b̃2θ) +
8ρΩ4

0R
4
o

g
η2
}

dS = E.

(2.48)

Substituting the parametersǫ = 4Ω2
0R

2
0/gH0 andα2 = v2A/4Ω

2
0R

2
0 for v2A = B2

0/µ0ρ, we

have a final equation
∫ ∫

ρH02Ω
2
0R

2
o

{

1

sin2 θ
(ũ2

θ + ũ2
φ) +

α2

sin2 θ
(b̃2φ + b̃2θ) + ǫη2

}

dS = E. (2.49)

Analogous to Longuet-Higgins (1968), we set the total energy

E ≡ 4πρHoΩ
2
0R

4
0.

Substituting the definition into the equation (2.49) and integrating with respect toφ, we

have
∫ π

0

{

1

sin2 θ
(ũ2

θ + ũ2
φ) +

α2

sin2 θ
(b̃2φ + b̃2θ) + ǫη2

}

sin θdθ = 1. (2.50)

Next, we substitute into the equation (2.50) the Legendre expansion solutions multiplied

by a normalization constant,γ

ũθ = γ

∞
∑

n=m

Am
n P

m
n (µ) eimφ−iωt, b̃θ = γ

∞
∑

n=m

Bm
n Pm

n (µ) eimφ−iωt,
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ũφ = γ

∞
∑

n=m

Cm
n Pm

n (µ) eimφ−iωt, b̃φ = γ

∞
∑

n=m

Dm
n P

m
n (µ) eimφ−iωt,

η = γ

∞
∑

n=m

Em
n Pm

n (µ) eimφ−iωt.

We use again this important result

uθu
∗
θ =

γ2

2

N
∑

n=m

N
∑

k=m

Am
n A

m
k
∗Pm

n (µ)Pm
k (µ).

where the star means the complex conjugate quantity. After some algebra steps the

equation obtained is

∫ 1

−1

γ2

2

{ ∞
∑

n=m

∞
∑

k=m

(Am
n A

m
k

∗ + Cm
n Cm

k
∗)

(1− µ2)
+

α2(Bm
n Bm

k
∗ +Dm

n D
m
k

∗)

(1− µ2)
+ ǫEm

n Em
k

∗

}

Pm
n (µ)Pm

k (µ) dµ = 1.

(2.51)

There are some integrals to be evaluated in this equation

γ2

2

{ ∞
∑

n=m

∞
∑

k=m

(Am
n A

m
k

∗ + Cm
n Cs

k
∗) + α2(Bm

n Bm
k

∗ +Dm
n D

m
k

∗)

}

∫ 1

−1

Pm
n (µ)Pm

k (µ)

(1− µ2)
dµ

+
γ2

2
ǫEm

n Em
k

∗
∫ 1

−1

Pm
n (µ)Pm

k (µ) dµ = 1.

The last integral has been calculated by Abramowitz and Stegun (1964)
∫ 1

−1

Pm
n (µ)Pm

k (µ)dµ =
2(n+m) !

(2n+ 1)(n−m) !
δnk.

Therefore

1

γ2
=

N
∑

n=m

N
∑

k=m

[(Cm
n Cm

n
∗ + Am

n A
m
n

∗) + α2(Dm
n D

m
n

∗ +Bm
n Bm

n
∗)]

∫ 1

−1

Pm
n (µ)Pm

k (µ)

(1− µ2)
dµ

+

N
∑

n=m

ǫEm
n Em

n
∗ 2(n+m) !

(2n+ 1)(n−m) !
.

(2.52)
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We are therefore able to calculate the value of the normalization constantγ

γ =
1√
E ′

whereE ′ is given by

E ′ =
N
∑

n=m

N
∑

k=m

[(Cm
n Cm

n
∗ + Am

n A
m
n
∗) + α2(Dm

n D
m
n

∗ +Bm
n Bm

n
∗)]

∫ 1

−1

Pm
n (µ)Pm

k (µ)

(1− µ2)
dµ

+
N
∑

n=m

ǫEm
n Em

n
∗ 2(n+m) !

(2n+ 1)(n−m) !
.

(2.53)

Rearranging the expression

E ′ =
N
∑

n=m

N
∑

k=m

[(Cm
n Cm

n
∗ + Am

n A
m
n

∗) + α2(Dm
n D

m
n

∗ +Bm
n Bm

n
∗)]Imnk

+
N
∑

n=m

ǫEm
n Em

n
∗ 2(n+m) !

(2n+ 1)(n−m) !,
(2.54)

where the index runs different for some coefficients than others. For first parity problem,

the value ofn for the coefficientsAm
n andBm

n aren = m,m+2, m+4, ...., also forCm
n ,

Dm
n andEm

n aren = m + 1, m + 3, m + 5, ..... For the other parity solution, the index

runs in the opposite way. The integralInk, has the following result

Imnk =



















0 if n andk have different parity,
(n+m) !
m(n−m) !

if n < k, for n, k same parity,
(k+m) !
m(k−m) !

if k < n, for n, k same parity,

(2.55)

2.5.1 Energy Equation for Complex Eigenvalues

When the eigenvalues are complex, the term(uθbφ − uφbθ) in the equation (2.45) is not

zero, then we have to evaluate this expression. In general, the eigenfunction for the
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velocity, can be expressed by

ũθ =
1

2

[

ūθe
i(mφ−ωt) + ū∗

θe
−i(mφ−ω∗t)

]

.

As a consequence of the complex form of the eigenvaluesω = ωr + iωi, and the

eigenfunctions, the integrals overφ are
∫ 2π

0

|uθ|2 dφ = πū∗
θūθe

2ωit,

and
∫ 2π

0

uθbφ dφ =
π

2
(ū∗

θb̄φ + ūθb̄
∗
φ)e

2ωit.

Then, the integral (2.45) takes the expression, form = 1

σ

∫ π

0

{ |ũθ|2 + |ũφ|2
sin2 θ

+ α2 |b̃φ|2 + |b̃θ|2
sin2 θ

+ ǫ|η|2 + α2 cos θ

sin2 θ
(b̃∗θ b̃φ + b̃∗φb̃θ)

}

sin θdθ

= 0,

(2.56)

whereσ is the growth rate, defined byσ = ωi/2Ω0. For growing modes the last term

must be negative to compensate the other positive definite terms of the energy equation

(2.56).

2.6 Second Order Differential Equation Formulation

The original system of equations for a shallow water model can be simplified to a second

order differential equation for̃uθ and forη as follows. Substituting the components of the

magnetic fields from (2.29d)-(2.29e) into (2.29a) and (2.29b). Then, the equations are

(λ2 −m2α2)ũθ + (λ+ 2mα2)µũφ + λ(1− µ2)
∂η

∂µ
= 0, (2.57a)

(λ2 −m2α2)ũφ + (λ+ 2mα2)µũθ − λmη = 0, (2.57b)

ǫλ(1− µ2)η − (1− µ2)
∂ũθ

∂µ
−mũφ = 0. (2.57c)
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2.6.1 Differential Equation for ũθ

From equation (2.57c)

ũφ =
1

m

[

−Dũθ + ǫλ(1− µ2)η
]

. (2.58)

After substitutinĝuφ into (2.57a) and (2.57b), we obtain

m(λ2−m2α2)ũθ+ ǫλ(λ+2mα2)µ(1−µ2)η− (λ+2mα2)µDũθ+λmDη = 0, (2.59)

−(λ2−m2α2)Dũθ + [(λ2−m2α2)ǫ(1−µ2)−m2]λη+m(λ+2mα2)µũθ = 0. (2.60)

From equation (2.60)

λη =
1

[(λ2 −m2α2)ǫ(1− µ2)−m2]

{

(λ2 −m2α2)Dũθ −m(λ + 2mα2)µũθ}. (2.61)

From equation (2.59)

λ
∂η̃

∂µ
=

(λ+ 2mα2)

m
µ
∂ũθ

∂µ
− ǫλ

m
(λ+ 2mα2)µη − (λ2 −m2α2)

(1− µ2)
ũθ. (2.62)

Taking the derivative of equation (2.60) yields

−(λ2w −m2α2)(1− µ2)
∂2ũθ

∂µ2
+ λ(m+ 2λ)µ

∂ũθ

∂µ
+m(λ + 2mα2)ũθ+

λ[(λ2 −m2α2)ǫ(1− µ2)−m2]
∂η

∂µ
− 2ǫλ(λ2 −m2α2)µη = 0.

(2.63)

Substitutingη and ∂η
∂µ

into equation (2.63), and simplifying the expression, we have

(1− µ2)
∂2ũθ

∂µ2
+

2m2

[(λ2 −m2α2)ǫ(1− µ2)−m2]
µ
∂ũθ

∂µ
+

{

ǫ(λ2 −m2α2)− m(λ+ 2mα2)

(λ2 −m2α2)
− ǫ(λ+ 2mα2)2µ2

(λ2 −m2α2)
− m2

(1− µ2)

− 2ǫm(λ+ 2mα2)µ2

[(λ2 −m2α2)ǫ(1− µ2)−m2]

}

ũθ = 0. (2.64)

This is a complicated second order differential equation for the variablẽuθ, we solve it

numerically or asymptotically in certain limits.
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We may also analyse the limit, whenǫ tends to zero. Then, ifǫ ≪ 1, the equation (2.64)

reduces to

(1− µ2)
∂2ũθ

∂µ2
− 2µ

∂ũθ

∂µ
+
{

−(λ + 2mα2)m

(λ2 −m2α2)
− m2

(1− µ2)

}

ũθ = 0. (2.65)

This is the Legendre differential equation, a second-orderordinary differential equation,

it occurs in numerous physical problems, specially in situations with axial symmetry

(Riley et al., 2006), which can be written

(1− µ2)
∂2y

∂µ2
− 2µ

∂y

∂µ
+ {n(n+ 1)− m2

(1− µ2)
}y = 0, (2.66)

where the parametern is a given integer number,in this way our solutions are finite and

then physically relevant. The solution is known as the Associated Legendre Polynomials

ũθ = Pm
n (µ),

wherem is the azimuthal wave-number, andn is the poloidal wave-number. Therefore

the dispersion relation will be

n(n+ 1) = −(λ + 2mα2)m

(λ2 −m2α2)
. (2.67)

We have the following formula, for different values ofn

n(n+ 1)λ2 +mλ +m2α2[2− n(n + 1)] = 0. (2.68)

This expression corresponds to the(44) equation in the article Zaqarashvili et al. (2007).

Solving the quadratic equation forλ

λ =
−m−

√

m2 − 4n(n+ 1)m2α2[2− n(n+ 1)]

2n(n+ 1)
, (2.69)

and

λ =
−m+

√

m2 − 4n(n + 1)m2α2[2− n(n+ 1)]

2n(n+ 1)
, (2.70)

whereλ = ω
2Ω0

.

These equations correspond to dispersion relation of magnetic Rossby waves. The first
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one is referred as fast magnetic Rossby waves and the second one is referred as slow

magnetic Rossby waves. Forα small these fast waves become the ordinary Rossby waves

travelling to the west

λ =
−m

n(n+ 1)
, (2.71)

and the frequency of the slow modes is given by

λ = mα2[n(n + 1)− 2]. (2.72)

These results are corresponding to the formulas (47) and (48) in Zaqarashvili et al. (2007).

This discussion is concerned about oscillatory solutions that represent a train of waves.

Their dispersion relation relates the frequencyω (or λ) to a functionf(k) of the wave

numberk

ω = f(k).

In this case the wave numbers are represented bym andn, the azimuthal (longitude) and

the poloidal (latitudinal) wave number respectively. Fromthis relation we can deduce the

phase speedvph and the group speed of the wavesvg:

vph =
ω

k
, and vg =

∂ω

∂k
.

The group velocity is the speed in which the energy and information travels (Vallis, 2006).

The phase speed and the group speed for the magnetic Rossby modes in the azimuthal

direction is:

vph = vg =
−2Ω0R0

n(n+ 1)
, Fast magnetic Rossby mode (2.73)

vph = vg = 2Ω0R0α
2[n(n+ 1)− 2]. Slow magnetic Rossby mode (2.74)

We note that the group speed and the phase speed are equal for both modes.

2.6.2 Differential Equation for η

From the equation (2.57b)

ũθ =
1

(λ+ 2mα2)µ

{

λmη − (λ2 −m2α2)ũφ

}

. (2.75)
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Differentiatingũθ, we obtain

∂ũθ

∂µ
= − ũθ

µ
+

1

(λ+ 2mα2)µ

[

λm
∂η

∂µ
− (λ2 −m2α2)

∂ũφ

∂µ

]

. (2.76)

Substituting∂ũθ

∂µ
into (2.57c), we have

ǫλ(λ+ 2mα2)(1− µ2)µη + (λ+ 2mα2)(1− µ2)ũθ − λm(1− µ2)
∂η

∂µ

+(λ2 −m2α2)(1− µ2)
∂ũφ

∂µ
−m(λ+ 2mα2)µũφ = 0. (2.77)

We substitutẽuθ into the last equation

−
[

(λ2 −m2α2)(1− µ2) +m(λ+ 2mα2)µ2
]

ũφ + (λ2 −m2α2)(1− µ2)µ
∂ũφ

∂µ

λ
[

m+ ǫ(λ+ 2mα2)µ2
]

(1− µ2)η − λm(1− µ2)µ
∂η

∂µ
= 0. (2.78)

On the other hand, we substituteũθ into (2.57a) and the result is

λm(λ2 −m2α2)η +
[

(λ+ 2mα2)2µ2 − (λ2 −m2α2)2
]

ũφ

+λ(λ+ 2mα2)(1− µ2)µ
∂η

∂µ
= 0. (2.79)

From this equation, we can find an expression forũφ, then

ũφ =
λ

[(λ2 −m2α2)2 − (λ+ 2mα2)2µ2]

[

m(λ2 −m2α2)η + (λ+ 2mα2)(1− µ2)µ
∂η

∂µ

]

. (2.80)

Differentiatingũφ from the last equation, we found an expression for∂ũφ

∂µ

∂ũφ

∂µ
=

1

[(λ2 −m2α2)2 − (λ+ 2mα2)2µ2]

{

2(λ+ 2mα2)µũφ + [mλ(λ2 −m2α2) + λ(λ+ 2mα2)(1− 3µ2)]
∂η

∂µ

+λ(λ+ 2mα2)(1− µ2)µ
∂2η

∂µ2

}

. (2.81)
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Then, we substitute,∂ũφ

∂µ
into the equation (2.78), rearrange the terms and obtain

{2(λ+ 2mα2)2(λ2 −m2α2)(1 − µ2)µ2

[(λ2 −m2α2)2 − (λ+ 2mα2)2µ2]

−
[

(λ2 −m2α2)(1 − µ2) +m(λ+ 2mα2)µ2
]

}

ũφ

+λ
(λ+ 2mα2)(λ2 −m2α2)(1− µ2)2µ2

[(λ2 −m2α2)2 − (λ+ 2mα2)2µ2]

∂2η

∂µ2
+ λ

[

m+ ǫ(λ+ 2mα2)µ2
]

(1− µ2)η

+λ
{

−m+ (λ2 −m2α2)
[m(λ2 −m2α2) + (λ+ 2mα2)(1− 3µ2)]

[(λ2 −m2α2)2 − (λ+ 2mα2)2µ2]

}

(1− µ2)µ
∂η

∂µ
= 0.

(2.82)

We obtain the final equation when substitute the expression for ũφ from equation (2.80)

into the equation (2.82)

(λ2 −m2α2)(1 − µ2)
∂2η

∂µ2
+ 2(λ2 −m2α2)

[

(λ+ 2mα2)2(1− µ2)

[(λ2 −m2α2)2 − (λ+ 2mα2)2µ2]
− 1

]

µ
∂η

∂µ

+
{

−m(λ+ 2mα2)− m2(λ2 −m2α2)

(1− µ2)
+ ǫ[(λ2 −m2α2)2 − (λ+ 2mα2)2µ2]

+
2m(λ+ 2mα2)(λ2 −m2α2)2

[(λ2 −m2α2)2 − (λ+ 2mα2)2µ2]

}

η = 0.

(2.83)

This equation could be written in the form

(1− µ2)
∂2η

∂µ2
+ 2
{ (λ+ 2mα2)2(1− µ2)

[(λ2 −m2α2)2 − (λ+ 2mα2)2µ2]
− 1
}

µ
∂η

∂µ

+
{−m(λ+ 2mα2)

(λ2 −m2α2)
− m2

(1− µ2)
+

ǫ

(λ2 −m2α2)
[(λ2 −m2α2)2 − (λ+ 2mα2)2µ2]

+
2m(λ+ 2mα2)(λ2 −m2α2)

[(λ2 −m2α2)2 − (λ+ 2mα2)2µ2]

}

η = 0.

(2.84)

This is a complicated second order differential equation for the variableη, we will need

it for solving analytically in some special cases.
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In summary, in this chapter we developed the numerical method for solving the MHD

shallow water system and the ordinary differential equation formulation that will be

important to find asymptotic solutions.
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Chapter 3

Hydrodynamic Shallow Water System

3.1 Solving the System of Equations for the Non-

magnetic Case

In the absence of magnetic field,B0 = 0, the set of five equations (2.26a)- (2.26e)

reduces to three equations, known as Laplace tidal equations, which have been solved

by Longuet-Higgins (1968). The following chapter of this thesis moves on to describe in

detail the solutions of the shallow water system. A summary of the derivation of Longuet-

Higgins (1968), for the dispersion relation for different kind of waves is presented here.

In the last section, we will present our numerical calculations and compare with Longuet-

Higgins results.

Let us now consider the Laplace tidal equations

∂uθ

∂t
− 2Ω0 cos θuφ +

g

Ro

∂h

∂θ
= 0, (3.1a)

∂uφ

∂t
+ 2Ω0 cos θuθ +

g

Ro sin θ

∂h

∂φ
= 0, (3.1b)

∂h

∂t
+

H0

Ro sin θ

∂(sin θuθ)

∂θ
+

H0

Ro sin θ

∂uφ

∂φ
= 0. (3.1c)
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For this problem, Longuet-Higgins (1968) has found two regimes: large and smallǫ =

4Ω2
0R

2
0/gH0 and the behaviour of the oscillations changes depending on this parameter.

In general, there are three types of waves: gravity waves, Rossby or planetary waves and

Kelvin waves.

3.1.1 Case for Small Values ofǫ

First Class Waves: Gravity Waves

This kind of waves is produced by the action of gravity as the restoring force in the

system. They are common in stably stratified layers of fluid, they can propagate in the

vertical or horizontal direction (Gill, 1982), and either eastward or westward in this case.

Gravity waves propagate as pressure gradients and horizontal divergence, caused by the

gravitational field, (Hines, 1972), see figure 3.1. If the fluid moves from the position in

blue to the position in red, this oscillation produces a positive change in pressure.

Figure 3.1: Gravity waves in a fluid are produced by the gravity force as restoring force and

propagate as pressure gradients and horizontal divergences.

Beginning with the equation (2.84) for the magnetic parameterα = 0, we will derive the
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dispersion relation and the eigenfunction for the height offluid in gravity waves

(1−µ2)
∂2η

∂µ2
+2

[

(1− µ2)

(λ2 − µ2)
− 1

]

µ
∂η

∂µ
+

[

ǫ(λ2 − µ2)− m2

(1− µ2)
+

m(λ2 + µ2)

λ(λ2 − µ2)

]

η = 0.

(3.2)

The numerical evidence shows that the gravity waves correspond to the highest frequency

oscillation. Then, we consider in this part the case when thefrequency is highλ2 ≫ 1

and ǫ ≪ 1, hence, the factors(λ2 + µ2) and (λ2 − µ2) reduce to∼ λ2. For the first

order derivative of this differential equation, we neglectterms of orderO(λ−2) and for

the factor proportional toη only the terms of orderO(λ2) will be taken into account. As a

result of this simplification the expression reduces to the Legendre Differential Equation

(1− µ2)
∂2η

∂µ2
− 2µ

∂η

∂µ
+ λ2ǫη = 0. (3.3)

The solution for this differential equation isη = Pn(cos θ), andλ2ǫ = n(n + 1), where

n is an integer,n = 1, 2, 3, ....

Consequently, the dispersion relation will be

λ = ±
√

n(n + 1)

ǫ
and so ω = ±

√

n(n + 1)gH0

R0
. (3.4)

These waves are also called First class waves andcorrespond to the formulas (4.4) and

(4.5) in the article of Longuet-Higgins (1968), and their dispersion relation is plotted in

the figure 3.2. This reflects that whenǫ is small, the frequency is large and decreases

when the rotation parameter increases.

Interestingly,uθ ∼ 1/λ anduφ ∼ 1/λ, so whenλ is large the amplitude ofη is larger

compared to the amplitude of the velocities. Then, the potential energy is the major

contribution to the mechanical energy, because the amplitude ofη is the highest.
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Figure 3.2: Dispersion relation for gravity waves.

We will find First class waves or gravity waves for small values ofǫ numerically in section

4.1 whereλ2 is proportional to1/ǫ and the eigenfunctions are the Legendre Polynomials.

Second Class Waves: Rossby Waves

Rossby waves are produced by the effect of the rotation of thesystem on the fluid (Tritton,

2012). In the Earth, they arise from the latitudinal variation of the Coriolis force2~Ω× ~v,

and the conservation of the potential vorticityζ asω̂ + f with ω̂ as the vorticity of the

fluid (Vallis, 2006). In the northern hemispheref = 2Ω0 sin Θ increases with the latitude

Θ = 90 − θ. If fluid is displaced northward, sincef increases, soω must decrease, see

figure 3.3. If fluid is displaced southward,ω has to increase. In this way a westward

propagating wave is generated.
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Figure 3.3: Rossby or planetary waves are produced by the conservation of the potential

vorticity ζ = ω̂ + f , wheref = 2Ω0 sinΘ, the resulting effect is a shift to the west of the

fluid.

In this section, we will derive the dispersion relation for Rossby waves. We start from the

equations of the shallow water model without magnetic field,multiplying the equation

(3.1b) bysin θ
∂

∂t
(sin θuφ) + 2Ω0 cos θ sin θuθ +

g

R0

∂h

∂φ
= 0. (3.5)

We differentiate the last equation with respect toθ

∂

∂t

∂

∂θ
(sin θuφ) +

∂

∂θ
[2Ω0 cos θ sin θuθ] +

g

R0

∂2h

∂φ∂θ
= 0. (3.6)

Rearranging this equation, we obtain

∂

∂t

∂

∂θ
(sin θuφ) + 2Ω0 cos θ

∂

∂θ
[sin θuθ]− 2Ω0 sin

2 θ uθ +
g

R0

∂2h

∂φ∂θ
= 0. (3.7)

Differentiating the equation (3.1a) with respect toφ

∂

∂t

∂uθ

∂φ
− 2Ω0 cos θ

∂uφ

∂φ
+

g

R0

∂2h

∂θ∂φ
= 0. (3.8)
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We subtract the equations (3.7) and (3.8), the result being

∂

∂t

[

∂

∂θ
(sin θuφ)−

∂uθ

∂φ

]

+ 2Ω0 cos θ

[

∂

∂θ
[sin θuθ] +

∂uφ

∂φ

]

− 2Ω0 sin
2 θuθ = 0. (3.9)

Taking the equation (3.1c) and rearranging it, the formula is

R0 sin θ

H0

∂h

∂t
+

∂

∂θ
(sin θuθ) +

∂uφ

∂φ
= 0. (3.10)

The parameterǫ = 4Ω2
0R

2
0/gH0 and the variableη = gh/2Ω0R0 will be introduced in

the above equation
ǫ

2Ω0

∂η

∂t
+

∂

∂θ
(sin θuθ) +

∂uφ

∂φ
= 0. (3.11)

We study the limit case whenǫ tends to zero, we can say thatǫ is small, and the equation

(3.11) becomes
∂

∂θ
(sin θuθ) +

∂uφ

∂φ
= 0. (3.12)

Returning to the equation (3.9) and using the result (3.12),the second term of (3.9) is

zero
∂

∂t

[

∂

∂θ
(sin θuφ)−

∂uθ

∂φ

]

− 2Ω0 sin
2 θuθ = 0. (3.13)

The stream functionΨ, related to the trajectories of the particles, is defined by

u = ∇× (Ψ(θ, φ, t)er) .

The components of the velocity can be written as

uθ =
1

R0 sin θ

∂Ψ

∂φ
and uφ = − 1

R0

∂Ψ

∂θ
.

Hence, ifΨ does not have radial dependence

1

R0 sin θ

[

∂

∂θ
(sin θuφ)−

∂uθ

∂φ

]

= − 1

R2
0 sin θ

∂

∂θ

(

sin θ
∂Ψ

∂θ

)

− 1

R2
0 sin

2 θ

∂2Ψ

∂φ2
= −∇2Ψ.

Dividing the equation (3.13) byR0 sin θ

∂

∂t

1

R0 sin θ

[

∂

∂θ
(sin θuφ)−

∂uθ

∂φ

]

− 2Ω0

R0
sin θuθ = 0. (3.14)
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We change the variable of the above equation toΨ giving

− ∂

∂t
∇2Ψ− 2Ω0

R2
0

∂Ψ

∂φ
= 0. (3.15)

This equation has solutions of the formΨ = Pm
n (cos θ)ei(mφ−ωt), wherePm

n are the

associated Legendre polynomials. Therefore, when we substitute in the equation (3.15),

the result is

ω∇2Ψ− 2Ω0m

R2
0

Ψ = 0. (3.16)

We applied the properties of the associated Legendre differential equation to evaluate this

derivative:∇2Ψ = −n(n + 1)/R2
0Ψ. The dispersion relation of these waves is

ω = − 2Ω0m

n(n + 1)
. (3.17)

These are called Rossby waves and from the minus sign of the equation it is clear that the

waves travel to the west, this is due to the vorticity which induces westward motion.With

respect to the dependence withǫ, it shows that the frequency does not depend onǫ.

λ = − m

n(n + 1)
. (3.18)

In this derivation, we have found an expression for the dispersion relation of Rossby

waves for small values ofǫ, these formulas correspond to the expresion (4.8) and (4.9)in

the article of Longuet-Higgins (1968).

3.1.2 Case of large Values ofǫ

Type 1 and Type 2

Starting from the ordinary differential equation (2.64) for the equations of MHD shallow

water system, a complicated second order differential equation for the variablẽuθ, we

will solve it in asymptotic form.
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In this case, whenα = 0 the equation (2.64) becomes

(1− µ2)
∂2ũθ

∂µ2
+

2m2

[λ2ǫ(1− µ2)−m2]
µ
∂ũθ

∂µ

−
{m

λ
+ ǫµ2 − 1

(1− µ2)
[λ2ǫ(1− µ2)−m2] +

2ǫmλµ2

[λ2ǫ(1− µ2)−m2]

}

ũθ = 0. (3.19)

We will take the limit case whenǫ is large, then, the factor[λ2ǫ(1 − µ2) − m2] can be

approximated to≈ λ2ǫ(1 − µ2)

(1− µ2)
∂2ũθ

∂µ2
+

2m2

λ2ǫ(1− µ2)
µ
∂ũθ

∂µ
−
{m

λ
+ ǫµ2 − λ2ǫ+

2mµ2

λ(1− µ2)

}

ũθ = 0. (3.20)

We confined the solution to the neighbourhood of the equator (Longuet-Higgins, 1968),

taking the limitµ2 ≪ 1, then1− µ2 ≈ 1, therefore the equation is determined by

∂2ũθ

∂µ2
+

2m2

λ2ǫ
µ
∂ũθ

∂µ
−
{m

λ
+ ǫµ2 − λ2ǫ+

2mµ2

λ

}

ũθ = 0. (3.21)

Analysing the last term in the equation (3.21), ifǫ is large butλ is small and its order is

λ ∼ O
(

ǫ−1/4
)

, thenǫλ4 is order one,O
(

1
)

. From this result,λ2 ∼ O
(

ǫ−1/2
)

. Therefore,

ǫλ2 ∼ O
(

ǫ1/2
)

≫ 1, in addition,1/λ ∼ O
(

ǫ1/4
)

. With this consideration, the termm
λ

is

order∼ O
(

ǫ1/4
)

, the nextǫµ2 goes∼ O
(

ǫ
)

, the termǫλ2 is ∼ O
(

ǫ1/2
)

and the last term
2mµ2

λ
∼ µ2ǫ1/4. This term is the smallest in the equation and it can be neglected, since

µ2 ≪ 1. Hence, we have

∂2ũθ

∂µ2
+
{

− m

λ
+ λ2ǫ− ǫµ2

}

ũθ = 0. (3.22)

We introduce a change of variable

ξ = ǫ
1

4µ and A = −m

λ
+ λ2ǫ,

after these substitutions, the equation (3.22) becomes

∂2ũθ

∂ξ2
+
{ A

ǫ1/2
− ξ2

}

ũθ = 0. (3.23)
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This Differential Equation is called Weber’s equation and the solutions are parabolic

cylinder functions. Let

A = ǫ1/2(2ν + 1) ν = 0, 1, 2, .... (3.24)

The differential equation becomes

∂2ũθ

∂ξ2
+ {(2ν + 1)− ξ2}ũθ = 0, (3.25)

whose solutions are in the form

ũθ = Ce−
1

2
ξ2Hν(ξ) = Ce−

1

2
ǫ1/2µ2

Hν(ǫ
1/4µ),

whereC is a constant andHν(ξ) is the Hermite polynomial of orderν. The first solutions

are plotted in the figure 3.4 for two different values ofǫ. We note that asǫ increases the

waves become confined to the equator. As a result of the equation (3.24), the dispersion
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Figure 3.4: Solutions for the velocityũθ for ν = 0, 1, 2, 3 .The first panel shows the

solutions forǫ = 100, the second panel forǫ = 1000.

relation of the waves is

ǫλ2 − m

λ
= ǫ1/2(2ν + 1). (3.26)

This is a cubic equation forλ

λ3 − (2ν + 1)

ǫ1/2
λ− m

ǫ
= 0. (3.27)
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We will find an approximate solution. For the first approximation we neglect the term

m/ǫ, then, equation (3.27) becomes

λ2 − (2ν + 1)

ǫ1/2
= 0, and λ = 0. (3.28)

The solution for the first equation is

λ = ±(2ν + 1)1/2

ǫ1/4
. (3.29)

We add more terms to this approximation

λ = ±(2ν + 1)1/2

ǫ1/4
+ δ. (3.30)

Substituting this approximation into the equation (3.27),hence
[

±(2ν + 1)1/2

ǫ1/4
+ δ

]3

− (2ν + 1)

ǫ1/2

[

±(2ν + 1)1/2

ǫ1/4
+ δ

]

− m

ǫ
= 0, (3.31)

in order to find an expression forδ, we neglect terms with orderδ2 and superior and

obtain

δ =
m

ǫ1/2(4ν + 2)
. (3.32)

The first two solutions are approximated by

λ = ±(2ν + 1)1/2

ǫ1/4
+

m

ǫ1/2(4ν + 2)
. (3.33)

They are called Type 1 waves and the equation (3.33) is the formula (8.9) in the article

of Longuet-Higgins (1968), and correspond to gravity wavestravelling eastward and

westward. The third solution is approximated by the equation

δ3 − (2ν + 1)

ǫ1/2
δ − m

ǫ
= 0. (3.34)

We neglect the term withδ3

δ = − m

ǫ1/2(2ν + 1)
. (3.35)

Therefore, the solution will be

λ = − m

ǫ1/2(2ν + 1)
. (3.36)
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These solutions are called Type 2 waves and are plotted in thefigure 3.5, and describe the

Rossby waves travelling to the west, when the parameterǫ is large. The formula (8.33) of

(Longuet-Higgins, 1968) is our (3.36).The theory for waves trapped at the equator was

developed by Longuet-Higgins (1968) in section 8.
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Figure 3.5: Dispersion relation forν = 1 andm = 1. The blue and green lines correspond

to the positive and negative values, equation (3.33), (Gravity waves travelling eastward and

westward), the red line is related to the equation (3.36) forRossby waves travelling to the

west.

The equatorial trapping of the waves is shown by the results of this method. When the

parameterǫ is large the waves become concentrated at the equator, because of the factor

e−
1

2
ǫ1/2µ2

in the solutions, so whenǫ is large the equatorial trapping increases.

The solutions forǫ small for a givenn (poloidal wavenumber) are associated with the

largeǫ theory waves withν wavenumber, in this form

ν = n−m+ 1, Westward propagating gravity waves,

ν = n−m− 1, Eastward propagating gravity waves.

As shown in the article of Longuet-Higgins (1968), the numerical results show which

solutions in the lowǫ limit match with largeǫ waves. The number of nodes of a solution
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for ǫ small is expected to be the same than the corresponding solution in the case forǫ

large, but this is not always true, especially ifǫ is very large.

Although, for waves travelling to the east, the moden −m = 0 always corresponds to

the Kelvin mode in the largeǫ theory. Rossby modes are related byν = n−m. However

there is amixed Rossby-gravitywave travelling westward which for largeǫ corresponds

to theν = 0 gravity wave in the formula (3.33) with the minus sign.

Type 3: Kelvin waves

A Kelvin wave is a kind of non-dispersive gravity wave where the Coriolis force balances

against a topographic boundary (Gill, 1982).In this case the equator acts a wave guide.

We will start the analysis from the equations (3.1a), (3.1b)and (3.1c) and derive the

dispersion relation for the Kelvin waves. As a result of the existence of a boundary, we

set the velocityuθ = 0. This assumption can lead to the next set of equations

2Ω0 cos θuφ =
g

R0

∂h

∂θ
, (3.37)

∂uφ

∂t
= − g

R0 sin θ

∂h

∂φ
, (3.38)

∂h

∂t
+

H0

R0 sin θ

∂uφ

∂φ
= 0. (3.39)

We perform a Fourier analysis in the formei(mφ−ωt). Hence the equations (3.38) and

(3.39) change to

ωuφ =
gm

R0 sin θ
h, (3.40)

ωh =
mH0

R0 sin θ
uφ. (3.41)

We deduce from the equation (3.41) thatuφ = gm
ωR0

h and substitute it into the equation

(3.40), obtain a result for the frequency

ω = ±
√
gH0m

R0
, or λ = ± m√

ǫ
. (3.42)
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The negative value ofλ must be discarded, in order to have finite solutions. The

colatitudeθ is related to the latitude through this expression:Θ = π/2− θ. We consider

latitudes near the equator, thenΘ the latitude is small, near zero. Therefore, the quantity

cos θ = sinΘ, can be approximated by∼ Θ, alsosin θ = cosΘ ∼ 1. Making these

approximations in the equations (3.37) and (3.41) and substitutinguφ =
√
g√
H0

h into (3.37)

we obtain
∂h

∂Θ
= −2Ω0R0

gH0

Θh. (3.43)

In terms of the parameterǫ and the latitudeΘ, the equation for the height becomes

∂h

∂Θ
= −

√
ǫΘh, (3.44)

The solution for this differential equation is

h = h0e
−
√
ǫΘ

2

2 , (3.45)

whereh0 is a constant. The solution gives equatorially trapped waves depending on the

value ofǫ and a balance between the buoyancy and the Coriolis force in the north-south

direction is produced.

3.2 Our numerical results

In the complete range of values ofǫ, we can reproduce the plots of Longuet-Higgins

(1968), forλ againstǫ with the numerical method developed in section 2.4. These results

are shown in the figure 3.6, the left panel shows some gravity modes travelling to the east,

the moden −m = 0 is the Kelvin mode for large values ofǫ. The right panel presents

westward propagating waves, the modes in the upper part are gravity waves , the green

line is themixed Rossby-gravity modeand the lower modes are the Rossby waves.
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Figure 3.6: Plot for λ againstǫ, m = 1 andα2 = 0. Modes travelling eastward at the left

side, the moden−m = 0 is the Kelvin wave. At the right the waves propagate westward.

Our numerical results are summarized in the tables 3.1 and 3.2. Negative frequencies

correspond to waves propagating westward (table 3.1), especially the first Rossby mode,

while positive frequencies correspond to modes propagating eastward (table 3.2), this

example is the first gravity wave forn = 1. Our expansions are truncated atn = N . Since

the expansions should ideally extend to infinity, we expect that more accurate results will

be obtained with largerN .
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Table 3.1: Comparison between the eigenvalues obtained and the results of Longuet-

Higgins, form = 1 and westward modes. First Rossby mode, takingN = 10 , N = 40 and

N = 85 with α2 = 0

ǫ λLH λ10 λ40 λ85

0.0886 -0.498896 -0.4989 -0.4989 -0.4989

0.1254 -0.498440 -0.4984 -0.4984 -0.4984

0.1776 -0.497795 -0.4978 -0.4979 -0.4980

0.2516 -0.496885 -0.4969 -0.4969 -0.4969

0.3567 -0.495602 -0.4956 -0.4956 -0.4956

0.5063 -0.493793 -0.4938 -0.4938 -0.4938

0.7197 -0.491248 -0.4912 -0.4912 -0.4912

1.0253 -0.487679 -0.4877 -0.4877 -0.4877

1.4649 -0.482695 -0.4827 -0.4827 -0.4827

2.1018 -0.475784 -0.4758 -0.4758 -0.4758

3.0328 -0.466312 -0.4663 -0.4663 -0.4663

4.4094 -0.453575 -0.4536 -0.4536 -0.4536

6.4730 -0.436961 -0.4370 -0.4370 0.4370

9.6096 -0.416252 -0.4163 -0.4163 -0.4163

14.4326 -0.391949 -0.3919 -0.3919 -0.3919

21.9011 -0.365279 -0.3653 -0.3653 -0.3653

33.5008 -0.337715 -0.3377 -0.3377 -0.3377

51.5424 -0.310424 -0.3104 -0.3104 -0.3104

79.6418 -0.284115 -0.2841 -0.2841 -0.2841

123.4763 -0.259159 -0.2592 -0.2592 -0.2592

191.9701 -0.235739 -0.2357 -0.2357 -0.2357

299.1591 -0.213933 -0.2139 -0.2139 -0.2139

467.1419 -0.193752 -0.1938 -0.1938 -0.1938

730.7396 -0.175165 -0.1752 -0.1752 -0.1752

1144.9 -0.158115 -0.1581 -0.1581 -0.1581

1796.1 -0.142529 -0.1425 -0.1425 -0.1425
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Table 3.2: Comparison between the eigenvalues obtained and the results of Longuet-

Higgins, form = 1 and eastward modes. First gravity mode, takingN = 10, N = 30

andN = 85 with α2 = 0

ǫ λLH λ10 λ30 λ85

9.87× 10−4 44.7582 44.7673 44.767 44.7673

0.0020 31.5047 31.3761 31.37 31.3761

0.0040 22.1341 22.1154 22.115 22.1154

0.0081 15.5096 15.4702 15.47 15.4702

0.0163 10.8274 10.8365 10.836 10.8365

0.0332 7.51950 7.5250 7.525 7.5250

0.0682 5.18485 5.1844 5.1844 5.1844

0.1412 3.54036 3.5407 3.5407 3.5407

0.2963 2.38685 2.3866 2.3866 2.3866

0.6310 1.58471 1.5848 1.5848 1.5848

1.3648 1.03619 1.0362 1.0362 1.0362

2.9785 0.671475 0.6715 0.6715 0.6715

6.4724 0.436995 0.4370 0.4370 0.4370

13.8319 0.289186 0.2892 0.2892 0.2892

28.9844 0.195169 0.1952 0.1952 0.1952

59.8086 0.133760 0.1338 0.1338 0.1338

122.1518 0.0926201 0.0926 0.0926 0.0926

247.8092 0.0645658 0.0646 0.0646 0.0646

500.4958 0.0452100 0.0452 0.0452 0.0452

1007.8 0.0317520 0.0318 0.0318 0.0318

2025.2 0.0223460 0.0223 0.0223 0.0223

4063.9 0.0157488 0.0157 0.0157 0.0157

8146.5 0.0111102 0.0111 0.0111 0.0111

16320 0.00784323 0.0077 0.0078 0.0078
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Looking at these results, we notice that there is no difference between theN = 40 or

evenN = 30 results and theN = 85, indicating that a truncation level ofN = 40 is

adequate in all cases. Generally, there is good agreement between our results and those of

Longuet-Higgins (1968), but significant differences are seen at largeǫ values. Longuet-

Higgins did not report his truncation level, but largeǫ requires larger truncation level

and we conjecture that the slight differences between our results and Longuet-Higgins at

largeǫ arise because he did not have sufficient resolution in the largeǫ cases.

We compare the Longuet-Higgins (1968) eigenfunctions withour results, we notice that

the relation between their variables and ours isZ =
√
ǫη , V = ũθ/ sin θ andU =

ũφ/ sin θ.

In the figure 3.7, the first column corresponds to the Kelvin moden −m = 0, which is

trapped at the equator forǫ ≥ 100. The second column corresponds to the first gravity

wave and is equatorially trapped whenǫ ≥ 10.

These figures 3.8 are gravity waves of higher order, as we increase the value ofn − m,

the number of nodes in latitude increases too.
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Figure 3.7: Numerical solution for different values ofǫ in eastward modes withN = 40,

m = 1, andn−m = 0 for the first column andn−m = 1 for the second one.
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Figure 3.8: Numerical solution for different values ofǫ in eastward modes withN = 40,

m = 1, andn−m = 2 for the first column andn−m = 3 for the second one.

3.2.1 Modes Travelling Westwards, Class 2,m = 1

This figure 3.9 plots the eigenfunctions for Rossby waves, travelling westward. The two

first modesn−m = 0 andn−m = 1 are represented in the left column and right column

respectively. It is shown in the pictures that waves are trapped to the Equator when the
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rotation parameter increases.
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Figure 3.9: Numerical solution for different values ofǫ in westward modes withN = 40,

m = 1, n−m = 0 for the first column andn−m = 1 for the second one.

Generally, there is good agreement between our numerical results and those of Longuet-

Higgins (1968). The figures can be reproduced with fidelity, and the solutions converge

when the expansions are truncated atN = 40.
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Chapter 4

Magnetohydrodynamics: Numerical

results

This chapter describes the numerical results for the magnetohydrodynamic system. This

problem has been solved by Zaqarashvili et al. (2007) for thelimit when ǫ andα are

small. The eigenvalue numerical method, developed in section 2.4 is used for identifying

and characterising the solutions to the mathematical problem in the all range ofǫ andα

in detail. We perform a complete survey of MHD waves in this shallow water system

which exceeds previous works.

Moving on now to consider the effect of the toroidal by varying the parameterα. As a

result of the presence of the magnetic field, the Rossby wavessplit in two modes: slow

and fast magnetic Rossby waves as shown is section 4.2. Moreover a new anomalous

slow mode arises. The gravity waves turn into Magneto Inertial Gravity (MIG) waves,

influenced by Coriolis, gravity and Lorentz forces. Furthermore the Kelvin modes are

also present, their main features are enhanced by the field and a new Kelvin wave

traveling to the west is excited by the field. In addition to the presence of the waves,

the magnetic field can drive instabilities, but we will discuss this in detail in chapter 6.

In figure 4.1(a) which shows scaled frequency as a function ofǫ−1/2, the red lines are
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two magneto-inertial gravity modes, the green line is the Kelvin mode and the blue ones

are the slow magnetic Rossby waves, these waves all travel tothe east. The dispersion

relation has been modified by a fixed moderate magnetic field (α = 0.1). In the next

panel, 4.1(b), the red curves are the magneto-inertial gravity waves travelling to the west

and the black lines are the fast magnetic Rossby modes.
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Figure 4.1: Dispersion relationλ as a function of1/ǫ1/2, for α = 0.1 andm = 1. Note

that large1/ǫ1/2 corresponds to slow rotation. (a) Eastward propagation: Magneto-inertial

gravity modes (red), the Kelvin mode (green) and slow magnetic Rossby waves (blue), (b)

Westwards propagation: Magneto-inertial gravity waves inred and the black lines are the

fast magnetic Rossby modes.

The magneto-inertial gravity waves have the highest frequencies and their solutions are

a sequence of eigenfunctions in which the frequency increases with the number of nodes

in latitude, alternating between symmetric and antisymmetric functions with respect to

the equator. The perturbation can travel eastward or westward. Note that asǫ−1/2 is

getting large,λ becomes linear with1/ǫ1/2, soω/2Ω0 ∼
√
gH0/2Ω0R0 which means the

frequency becomes independent of rotation in this limit asΩ0 → 0. This shows that in

this limit the waves do become gravity waves, which have a phase speed of
√
gH0. On

the other hand, for the slow magnetic Rossby waves,λ tends to a constant asǫ → 0,
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showing thatω ∼ Ω0 for these waves. Similar behaviour is found in figure 4.1(b) for the

westward waves.

Figure 4.2 (a) shows the northward velocity for the first three MIG modes, the lowest

(symmetric) in blue has two nodes, the next one (antisymmetric) in green has three nodes

and the highest (symmetric) in red has four nodes. The Kelvinmode travelling to the

east is represented in graph 4.2(b), it has been plotted forǫ = 1, where this wave has the

properties of the first gravity mode. Note that it has only onenode and is antisymmetric.

The behaviour of the Kelvin wave changes withǫ; at smallǫ, it has the nature of a gravity

wave, but at largeǫ it becomes equatorially trapped and has a velocity which is almost

purely azimuthal. This is discussed further in section 4.4 below. These plots were made

for α = 0.1, ǫ = 1, m = 1 andN = 50.
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Figure 4.2: Northward velocityũθ for α = 0.1, ǫ = 1, m = 1 andN = 50. (a) Magneto

Inertial Gravity Waves travelling eastward, the lowest (symmetric) with two nodes in blue,

the next one (antisymmetric) in green with three nodes and the highest (symmetric) in red

with 4 nodes. (b) The Kelvin mode travelling eastward, in this regimeǫ = 1, it behaves like

the first antisymmetric gravity wave with one node.

Some magnetic Rossby waves are plotted in figure 4.3. In panel(a), the fast mode is

travelling to the west, the first symmetric mode is represented in blue and has no nodes,
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the next one in green, is an antisymmetric wave with one latitudinal node and the lowest

of frequency this example corresponds to a symmetric mode with two nodes. In this case,

when the frequency decreases, the number of nodes increases. The lowest frequencies

are in panel (b), as slow magnetic Rossby waves travelling tothe east, except for the

first mode which is anomalous and travels to the west as a symmetric mode. The blue

curve has the lowest frequency for an antisymmetric mode with one node, the next highest

frequency (green curve) is symmetric mode with two nodes, and the red one is the highest

frequency of this sequence, and represents an antisymmetric behaviour and has three

nodes. For the slow modes as the frequency increases the number of latitudinal nodes

increases too.
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(a) Fast magnetic Rossby waves
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Figure 4.3: Northward velocityũθ for α = 0.1, ǫ = 1, m = 1 andN = 50. (a) Fast

magnetic Rossby waves travelling westwards, in blue the highest frequency and symmetric

without nodes, the green curve represents the following antisymmetric mode with one

node and the red curve is the lowest frequency and symmetric wave with two nodes. (b)

Slow magnetic Rossby waves travelling eastwards, the blue line corresponds to the first

antisymmetric mode with one node, the green curve is the second symmetric mode with two

nodes and the red curve is the antisymmetric wave with three nodes and highest frequency.
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4.1 Magneto Inertial Gravity Waves

A noted above the highest frequencies correspond to magneto-inertial gravity waves.

These waves are essentially Class 1 waves, (Longuet-Higgins, 1968), interfacial gravity

waves, modified by the magnetic field. In the limit of a strong magnetic field, largeα, the

frequency increases and the waves become trapped at the equator as Alfvén waves, quite

independent of rotationǫ as seen intables 4.1-4.6.

Alfvén waves are magnetic tension oscillations that propagate along magnetic field lines,

as waves they transport energy and momentum. These are transversal and non dispersive

waves (Gubbins and Herrero-Bervera, 2007).

We choose the modesn = 1 andn = 2 for m = 1 and vary the magnetic parameter

α. The results are in tables 4.1 (westward) and 4.2 (eastward)for n = 1. Tables 4.3

(eastward) and 4.4 (westward) are forn = 2. The moden = 3 for m = 2 is shown in

table 4.5 (eastward) and 4.6 (westward).

Owing to limited resolution, it is possible that the code cannot calculate the eigenvalues

or eigenfunctions with accuracy when some waves undergo equatorial or polar trapping.

These sharp and extremely localized functions need a large number of modes in the

expansion to be calculated. For this reason, whenα or ǫ are large, we write **** in

the tables forλ when the value is not certain.

The numerical results for the first MIG mode are summarized intables 4.1 for the

westward wave. Whenǫ andα are small, the frequency can be calculated with the

hydrodynamic formula (3.4)

λ = ±
√

n(n + 1)

ǫ
and so ω = ±

√

n(n + 1)gH0

R0
, (4.1)

with n = 1, (Longuet-Higgins, 1968). For largeǫ and smallα, the frequencies can be

computed by the hydrodynamic equation (3.33)

λ = ±(2ν + 1)1/2

ǫ1/4
+

m

ǫ1/2(4ν + 2)
, (4.2)
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for ν = 1. For largeα, the wave speed tends to the Alfvén speed with frequencies

λ = ±mα. It is clear that the MIG waves always remain in the superalfvénic regime

(|λ| > mα) and are stable.

Table 4.1: Eigenvaluesλ for different values ofα andǫ, Magneto Inertial Gravity Waves

travelling westward forn = 1, m = 1, N = 80.

α 10−3 10−2 10−1 1 101 102 103

ǫ = 0.01 -14.400 -14.400 -14.400 -14.398 -16.397 -100.5 ****

ǫ = 0.1 -4.7464 -4.7464 -4.7463 -4.7351 -10.501 **** *****

ǫ = 1 -1.7415 -1.7415 -1.7404 -1.6888 -10.050 **** ****

ǫ = 10 -0.88188 -0.88185 -0.87935 -1.0516 -10.005 **** ****

ǫ = 100 -0.52836 -0.52840 -0.53222 -1.0050 **** **** ****

Table 4.2 shows the eigenvalues for waves travelling to the east, comparing with the

westward mode. There is no important difference between westward and eastward

frequencies, except whenα is small. The theory of Longuet-Higgins (1968) establishes

that for smallǫ westward and eastward frequencies are equal, see equation 4.1, however

there is a difference in our numerical results in favour of westward waves making the

frequency slightly larger in magnitude.

In the case of MIG waves travelling eastward forn = 1, m = 1, this oscillation has

been identified as the Kelvin wave for large values ofǫ where the eigenfunctions are

equatorially trapped andλ = mǫ−1/2. A more detailed account of Kelvin waves is given

in the section 4.4.
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Table 4.2: Eigenvaluesλ for different values ofα andǫ, Magneto Inertial Gravity Waves

travelling eastward forn = 1, m = 1, N = 80.

α 10−3 10−2 10−1 1 101 102 103

ǫ = 0.01 13.9 13.9 13.9 13.9012 15.2263 100.5000 ****

ǫ = 0.1 4.2452 4.2452 4.2453 4.2649 10.4999 100.0500 ****

ǫ = 1 1.2307 1.2307 1.2323 1.4782 10.0050 **** ****

ǫ = 10 0.34457 0.34468 0.35618 1.0496 10.0050 **** ****

ǫ = 100 0.10263 0.10309 0.14257 1.005 **** **** ****

In general for the westward MIG waves then −m+ 1 mode for smallǫ connects to the

ν mode in largeǫ theory, see section 3.1.2 and Longuet-Higgins (1968). Withregard to

eastward propagating waves, the MIG first moden−m = 0, turns into the Kelvin mode,

and for the rest of the sequence the moden−m− 1 connects toν in the largeǫ theory.

Table 4.3 summarizes the normalized frequency forn = 2 andm = 1, for waves

travelling eastwards. For smallα, the eigenvalueλ can be predicted by the formula

(4.1) with n = 2, for ǫ small, whenǫ is large the values correspond to the expression

(4.2) withν = 0. For largeα, λ tends tomα plus a small variation. This small variation

increases forǫ small.
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Table 4.3: Eigenvaluesλ for different values ofα andǫ, Magneto Inertial Gravity Waves

travelling eastward forn = 2, m = 1, N = 80. Note that **** denotes eigenvalues which

could not be computed accurately for numerical reasons.

α 10−3 10−2 10−1 1 101 102 103

ǫ = 0.01 24.419 24.419 24.419 24.434 26.269 117.86 1037.1

ǫ = 0.1 7.6851 7.6851 7.6856 7.7409 14.357 108.09 1018.9

ǫ = 1 2.4316 2.4316 2.434 2.6913 11.839 103.72 ****

ǫ = 10 0.8459 0.84601 0.85661 1.5451 10.833 **** ****

ǫ = 100 0.37963 0.37989 0.40424 1.2342 10.383 **** ****

Figure 4.4 shows the solutions for the velocity field againstcolatitude: The northward

velocity, ũθ/ sin θ, is plotted in the upper part and the azimuthal velocity,ũφ/ sin θ is at

the bottom. The first column is forα = 10−3, for small ǫ where the eigenfunctions

are the Associated Legendre polynomials. Whenǫ increases the solutions become

confined to the equatorial region. For a strong field (α = 5) the eigenfunctions for

weak rotation have changed slightly and for strong rotationthe equatorial trapping is

enhanced. Zaqarashvili et al. (2009) found equatorially trapped waves, considering an

antisymmetric basic state field with zero toroidal field at the equator. They established

that the variation of the magnetic field across the equator isassociated with the trapping

rather than the asymptotic nature of the parameters.

The magnetic field perturbation shows the same behaviour as the velocity, forα large

and ǫ large: the waves become equatorially trapped. The behaviour of the magnetic

field is essentially identical to that of the velocities functions, because the magnetic field

perturbation is directly proportional to the velocity, seefigure 4.5.

Figure 4.6 is a good illustration of the effect of magnetic field on MIG waves. In the

case ofǫ = 0.01 in the upper panels, the solutions correspond to Legendre polynomials

and remain similar forα large. Then, when the rotation parameter is increased, the waves
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Figure 4.4: Numerical solution for the velocity for different values ofǫ in the magneto-

inertial gravity wave travelling eastward for the second mode (n = 2) with N = 50, m = 1.

The first column corresponds toα = 10−3 andα = 5 for the second one.
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(b) α = 5
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(c) α = 10−3
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Figure 4.5: Numerical solution for the magnetic field perturbation for different values ofǫ

in the magneto-inertial gravity wave travelling eastward for the second mode (n = 2) with

N = 50, m = 1. The first column corresponds toα = 10−3 andα = 5 for the second one.
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becomes trapped at the equator. It is evident that increasing α produces more equatorial

trapping.

η    λ 24.4188  α:0.001  and ε: 0.01
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Figure 4.6: Contour plots of the scaled heightη, for increasingǫ (0.01, 1 and 100).

Numerical solution for different values ofǫ in the magneto-inertial gravity wave travelling

eastward for the second mode andm = 1. The first column corresponds toα = 10−3 with

N = 50 andα = 5 with N = 70 for the second one.
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The eigenvalues for the westward propagating MIG wave,n = 2 andm = 1, are reported

in the table 4.4. It is expected that for small values ofα, when the field is weak, the

frequency can be calculated with the formula (4.1) forn = 2 for ǫ small and with the

equation (4.2) andν = 2 for largeǫ.

Table 4.4: Eigenvaluesλ for different values ofα andǫ, Magneto Inertial Gravity Waves

travelling westward forn = 2, m = 1, N = 50.

α 10−3 10−2 10−1 1 101 102 103

ǫ = 0.01 -24.586 -24.586 -24.586 -24.598 -26.227 -117.74 -1037.1

ǫ = 0.1 -7.8533 -7.8533 -7.8536 -7.8858 -14.102 -108.03 -1018.8

ǫ = 1 -2.6129 -2.6129 -2.6131 -2.6718 -11.719 -103.7 ****

ǫ = 10 -1.1119 -1.1118 -1.1088 -1.2956 -10.779 **** ****

ǫ = 100 -0.67845 -0.67845 -0.67891 -1.1118 -10.358 **** ****

For the moden = 2, eastward and westward eigenfunctions correspond to the same

Legendre polynomial:P 1
2 , when ǫ is small. However, for largeǫ the eigenfunctions

for eastward and westward waves are expected to be different, as it is confirmed in the

figure 4.7, because whenǫ is large the westward eigenfunctions evolve toward aν = 2

mode, unlike the wave propagating eastward which evolves towards the modeν = 1. For

smallα values, in the first column, the solutions are the Legendre functions forǫ small.

When the rotation parameter increases the waves become equatorially trapped. When

α increases to5 the wave becomes more trapped at the equator without any difference

between west and east modes. It is clear that the magnetic field enhances the equatorial

trapping.

As expected, the magnetic field perturbation shows, in figure4.8, the same behaviour as

the velocity. Forα large andǫ large, the waves become equatorially trapped.

Figure 4.9 shows the scaled height of the layer of fluid for waves travelling westward.

Here, the equatorial trapping is evident, whenǫ is large and/orα is large. The main
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(b) α = 5
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(c) α = 10−3
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Figure 4.7: Numerical solution for the velocity with different values of ǫ in the magneto-

inertial gravity waves travelling westward for the second moden = 2 andm = 1. The first

column corresponds toα = 10−3 with N = 50 andα = 5 with N = 70 for the second one.
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(c) α = 10−3
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Figure 4.8: Numerical solution for the magnetic field perturbation for different values ofǫ

in the magneto-inertial gravity wave travelling westward for the second moden = 2 with

N = 50 andm = 1. The first column corresponds toα = 10−3 andα = 5 for the second

one.



Chapter 4. Magnetohydrodynamics: Numerical results 77

difference is, as we mention before, that the westward MIG wave in a weak field (α =

10−3), turns into a higher mode for strong rotation, as we can see in figure 4.9. In this

case, there are more latitudinal nodes.
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Figure 4.9: Contour plots of the scaled heightη for increasingǫ (0.01, 1 and100) in the

magneto-inertial gravity waves travelling westward for the second moden = 2 andm = 1.

The first column corresponds toα = 10−3 with N = 50 andα = 5 with N = 70 for the

second one.
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As was pointed out before, the main differences between waves travelling eastward and

westward are:

• Small ǫ: the eigenvalues for the westward waves have slightly larger frequencies

than the eastward ones. In addition, the solutions for the northward velocity

correspond to the Legendre polynomialP 1
2 with different amplitudes. The

amplitude of the waves travelling eastward decreases whenǫ increases, for the

MIG waves travelling westward the amplitude increases whenǫ increases. This is

due to the fact that eastward moden−m = 1 has less kinetic energy than westward

modes, in this regime. The potential energy has a major contribution for the total

energy in the eastward propagating mode, then, whenǫ increases the normalization

constant diminishes significantly, reducing the amplitudeof the velocity, Longuet-

Higgins (1968).

• Largeǫ: the MIG waves travelling westward become an degree larger (n−m+ 1)

than its analogous wave travelling eastward (n−m− 1).

However, when bothα andǫ are large, there is little difference between west and east

movements.

Let us now consider one example ofm = 2 MIG waves. In table 4.5 the normalized

frequency for the eastwardn = 3 mode is reported. Forα small, the values correspond

to the formula (4.1) withn = 3 whenǫ is small, and the largeǫ values correspond to the

formula (4.2) withν = 0. Forα large the frequency is expected to tend to the Alfvén

speedλ = mα.
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Table 4.5: Eigenvaluesλ for different values ofα andǫ, n = 3, m = 2 andN = 50 and .

Magneto Inertial Gravity Waves: Waves travelling eastward.

α 10−3 10−2 10−1 1 101 102 103

ǫ = 0.01 34.562 34.562 34.563 34.611 39.663 215.92 2030.2

ǫ = 0.1 10.885 10.885 10.887 11.048 24.396 206.78 2017.2

ǫ = 1 3.423 3.423 3.4288 4.0077 21.636 203.03 2015.5

ǫ = 10 1.1224 1.1227 1.1454 2.53 20.697 201.72 2015.3

ǫ = 100 0.44709 0.44778 0.51054 2.2044 20.312 201.55 2015.3

The velocity field illustrated in figure 4.10 shows that the first moden = 3 is symmetric

(for ũθ) with respect to the equator. Then, for a weak magnetic field (α = 10−3) in the

first column the solutions correspond to the Legendre functions, but the largeǫ waves are

equatorially trapped, as shown in the purple curves of the left panels forα large.

The magnetic perturbations for the moden = 3 andm = 2, illustrated in figure 4.11,

show larger amplitudes than the velocity plots and the equatorial trapping is evident for

largeα and largeǫ.

Figure 4.12, forn = 3 mode, shows more longitudinal nodes than the previous results

because of them = 2 wave number. Here, the rotation tends to trap the waves at the

equator, and the magnetic field enhances the equatorial trapping. Forα = 5 andǫ = 100

(lower right panel), the oscillation is hard to resolve numerically, therefore, in order to

have more clear graphs , we do not consider values ofα greater than5.
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ũ
φ
/
si

n
θ

 

 
 ε=0.01
 ε=0.1
 ε=1
 ε=10
 ε=100

(a)α = 5

Figure 4.10: Numerical solution for the velocity for different values ofǫ in the magneto-

inertial gravity wave travelling eastward for the first moden = 3, m = 2 andN = 50. The

first column corresponds toα = 10−3 andα = 5 for the second one.
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(b) α = 5
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(c) α = 10−3
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Figure 4.11: Numerical solution for the magnetic field perturbation for different values of

ǫ in the magneto-inertial gravity wave travelling eastward for the first moden = 3, m = 2

andN = 50. The first column corresponds toα = 10−3 andα = 5 for the second one.
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Figure 4.12: Contour plots of the scaled heightη for increasingǫ (0.01, 1 and 100).

Numerical solution for different values ofǫ in the magneto-inertial gravity wave travelling

eastward for the first moden = 3, m = 2 andN = 50. The first column corresponds to

α = 10−3 andα = 5 with for the second column.

Regarding the differences between eastward and westward propagating waves, we report

the westward MIG wave forn = 3, m = 2 in the table 4.6. The frequencies for small
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α can be computed with the formula (4.1) forn = 3 whenǫ is small and equation (4.2)

gives the frequencies for largeǫ whenν = 2. As was mentioned earlier, whenα is large

λ tends to the Alfvén speed,−mα, plus a small variation which depends onǫ.

Table 4.6: Eigenvaluesλ for different values ofα and ǫ, n = 3, m = 2 andN = 50.

Magneto Inertial Gravity waves. Waves travelling westward.

α 10−3 10−2 10−1 1 101 102 103

ǫ = 0.01 -34.729 -34.729 -34.729 -34.776 -39.644 -215.82 -2030.2

ǫ = 0.1 -11.052 -11.052 -11.054 -11.195 -24.183 -206.73 -2017.1

ǫ = 1 -3.5945 -3.5946 -3.5984 -4 -21.537 -203.01 -2015.4

ǫ = 10 -1.3265 -1.3266 -1.3348 -2.319 -20.654 -201.71 -2015.4

ǫ = 100 -0.69022 -0.69045 -0.71298 -2.104 -20.292 -201.54 -2015.3

The velocitiesũθ and ũφ are plotted in figure 4.13. Whenǫ increases the waves move

toward the equator, and for largeα the equatorial trapping increases. As indicated

previously, ifα is very large, the field dominates and the eastward and westward motions

present no difference and the equatorial trapping is located in a small region of∼ 15◦

near the equator (ǫ = 10 or 100).

The magnetic field components are plotted in figure 4.14 for the MIG moden = 3,

m = 2. Whenα is small the solutions correspond to the Legendre polynomials but if

ǫ is large the waves are equatorially trapped. In the largeα regime, whenǫ increases

the eigenfunctions are shifted towards the equator. In terms of the amplitude of the

perturbation, for this mode, the amplitude is higher than the velocity amplitudes.

Figure 4.15 shows more longitudinal nodes, becausem = 2 in this case, and the

equatorial trapping is evident whenα or ǫ is large. But in the presence of a strong field,

in second column of the figure, the equatorial trapping has been accentuated, particularly

for α = 5 andǫ = 100 where the oscillation is confined to a narrow band at the equator.
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(b) α = 5
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Figure 4.13: Numerical solution for the velocity for different values ofǫ in the magneto-

inertial gravity wave travelling westward for the first moden = 3, m = 2 andN = 50. The

first column corresponds toα = 10−3 andα = 5 the second column.
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Figure 4.14: Numerical solution for the magnetic field perturbation for different values of

ǫ in the magneto-inertial gravity wave travelling eastward for the first moden = 3, m = 2

andN = 50. The first column corresponds toα = 10−3 andα = 5 for the second one.
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Figure 4.15: Contour plots of the scaled heightη for increasingǫ (0.01, 1 and100) in the

magneto-inertial gravity wave travelling eastward for thefirst moden = 3, m = 2 and

N = 50. The first column corresponds toα = 10−3 with N = 50 andα = 5 with N = 70

for the second one.
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4.2 Magnetic Rossby Waves

Rossby waves or planetary waves are an effect of the conservation of the potential

vorticity, travelling to the west as a consequence of the rotation of the system. In the

presence of a toroidal field this mode splits into two: Fast Magnetic Rossby waves

travelling to the west and Slow Magnetic Rossby waves travelling to the east. In this

section, we describe analytically and numerically the physical properties of these waves,

and in the chapter 6 we will discuss the instability of these modes.

Consider the Magnetic Rossby Modes in a case when the parameter ǫ is very small,

(Zaqarashvili et al., 2007). Let us return to equation (2.64), the general differential

equation forũθ and evaluate it in this limit, the equation (2.64) can be reduced to

the Legendre differential equation, a second-order ordinary differential equation whose

solutions are the Associated Legendre Polynomials,ũθ = Pm
n (cos θ), see section 2.6.1

and the dispersion relation of these waves is given by the formulas (2.69) and (2.70)

λ =
−m±m

√

1− 4α2n(n + 1)[2− n(n + 1)]

2n(n + 1)
, (4.3)

where the expression with the positive sign corresponds to slow magnetic Rossby waves

which travel eastward and the negative normalized frequencies are fast magnetic Rossby

waves travelling westward. In the case whenα = 0, the equation for fast Rossby modes

reduces toλ = −m/n(n + 1) which are the hydrodynamic Rossby waves, (Longuet-

Higgins, 1968). Note from expression (4.3) thatλ decreases withn.

4.2.1 Fast Magnetic Rossby Waves

Some numerical calculations present frequencies which corresponds to fast magnetic

Rossby waves. Moreover, the eigenvalues have been reportedand the corresponding

eigenfunctions have been plotted. When the magnetic field and the rotation are weak,

the solutions correspond to pure Rossby Waves and the solutions are the associated
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Legendre polynomials, see Zaqarashvili et al. (2010a) and shown above.

The first fast magnetic Rossby mode (n = 1) corresponds to themagneto mixed

Rossby-gravity mode, Matsuno (1966), and this is the highest value forλ of the Rossby

waves. The values of the normalized frequencyλ are registered in table 4.7. In the first

columns whereα is small, whenǫ is small the frequency satisfies the formula (4.3),

whenǫ is largeλ follows (4.2) with negative sign and forν = 0.

The second and pure fast magnetic Rossby mode is shown in the table 4.8. Forα andǫ

small the values agree with the formula (4.3) forn = 2 and for largeǫ, λ coincides with

equation (3.36) forν = 1,

λ = − m

ǫ1/2(2ν + 1)
. (4.4)

In general, fast magnetic Rossby modes corresponding ton andm at smallǫ turn into

modes withν = n−m at largeǫ.

Whenα > 0.5 the fast magnetic Rossby waves enters a new regime, and they start to

coalesce with the slow magnetic Rossby modes and the frequency becomes complex: the

instability begins. This will be discussed further in chapter 6.

This unstable behaviour is described for fast and slow magnetic Rossby waves, as well

as, the existence of a new regime afterα = 0.5, when the fast wave becomes subalfvénic

|λ| < mα. It can be seen in table 4.7 forn = 1 with m = 1, and in table 4.8 forn = 2

with m = 1.

Whenα, the magnetic field parameter, increases an instability occurs. The first fast mode,

n = 1, collides with the anomalous slow magnetic Rossby mode, andbecomes complex.

The second mode,n = 2, collides with then = 2 slow magnetic Rossby mode and so

on. However, unstable modes just appear whenm = 1.
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Table 4.7: Eigenvaluesλ for different values ofα andǫ, N = 50 andm = 1. Magneto

mixed Rossby-gravity moden = 1: Waves travelling westward.

α 10−3 10−2 10−1 1 101 102 103

ǫ = 0.01 -0.4999 -0.4999 -0.4999 -0.4989 -0.301- 3.2i -0.482 - 92.7i-0.498- 992.9i

ǫ = 0.1 -0.4988 -0.4988 -0.4989 -0.4883 -0.442 -7.5i -0.494 - 97.7i-0.499- 997.8i

ǫ = 1 -0.4880 -0.4880 -0.4889 -0.294 - 0.1i -0.482 - 9.3i -0.498 - 99.3i -0.500 - 999.1i

ǫ = 10 -0.4140 -0.4141 -0.4202 -0.435-0.6i -0.494 - 9.8i -0.499 - 99.8i -0.480 - 0.8i

ǫ = 100 -0.2710 -0.2711 -0.2877 -0.500 - 99.9i -0.498 - 9.9i -0.500 -99.9i -0.500- 999.3i

Table 4.8: Eigenvaluesλ for different values ofα andǫ, N = 50 andm = 1. Fast magnetic

Rossby Moden = 2: Waves travelling westward.

α 10−3 10−2 10−1 1 101 102 103

ǫ = 0.01 -0.1665 -0.1669 -0.1999 -0.9034 -5.297 -0.482-92.7i -0.498-992.9i

ǫ = 0.1 -0.1652 -0.1656 -0.1987 -0.8971 -0.443- 7.5i -0.494 -97.7i-0.499-997.8i

ǫ = 1 -0.1530 -0.1534 -0.1886 -0.8086 -0.482-9.3i -0.498-99.3i-0.500 - 999.1i

ǫ = 10 -0.0950 -0.0956 -0.1408 -0.437-0.600i -0.494-9.8i -0.499- 99.8i -0.500 - 999.3i

ǫ = 100 -0.033 -0.0346 -0.1054 -0.480 - 0.8i -0.498 - 9.9i -0.500 - 99.9i -0.500 - 999.4i

ǫ = 1000 -0.0106 -0.0145 -0.1006 -0.494 - 0.8i -0.499-10.0i -0.500 -99.9i -0.500 - 999.3i

Figure 4.16 shows the velocity field. It is clear that themagneto mixed Rossby-gravity

mode undergoes equatorial trapping forǫ large, even when the magnetic field is weak.

Also, the main difference between the first column (α = 10−3) and the second one (α =

10−1) is that there is a slightly decreasing in the amplitude of the velocities, even when

α increases in two orders of magnitude. In this regime the waves are more influenced by

the rotation.

Notice by comparison between panels 4.16(a) and 4.16(c), that whileũθ is symmetric,̃uφ

is antisymmetric. The energy for thismagneto mixed Rossby-gravity modeis mostly

kinetic whenǫ tends to zero and the wave behaves like a Rossby mode. Whenǫ is large

the wave is a gravity wave and the ratio of the kinetic energy to the total energy is greater

than 0.75 for the hydrodynamic case, according to Longuet-Higgins (1968).
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(c) α = 10−3

0 20 40 60 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

colatitude (degrees)

ũ
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Figure 4.16: Numerical solution of the velocity for different values ofǫ in the fast magnetic

Rossby mode forn = 1, m = 1 andN = 50.

The perturbation in the magnetic field has the same behaviourbut a high amplitude with

respect to the velocity, see figure 4.17, because as shown in equations (2.29d) and (2.29e),

the field is proportional to the velocity but inverse to the normalized frequency. Since

these frequencies are smaller than 1, the amplitudes for these fields must be intense.
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(b) α = 10−1
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Figure 4.17: Numerical solution of the magnetic field for different values of ǫ in the fast

magnetic Rossby mode forn = 1, m = 1 andN = 50.

Figure 4.18, it shows that the amplitudes forη are small compared with the velocity

amplitude, whenα or ǫ are large. It is very clear that largeǫ produces waves equatorially

trapped, as it is shown in figure 4.18(a) and (c). Also, a strong magnetic field increases

the equatorially trapping, see panels 4.18(b) and (d).
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Figure 4.18: Numerical solution for the scaled heightη for increasingǫ (0.01 and100) in

the fast magnetic Rossby mode forn = 1, m = 1 andN = 50.

Figure 4.19 shows the second mode of the fast magnetic Rossbywaves. In this case,

as reflected in the figure,̃uθ is antisymmetric with respect to the equator whileũφ is

symmetric, opposite to then = 1 case. In the figure we can note that whenǫ is large the

waves become trapped at the equator. Whenα increases from10−3 (panels 4.19(a) and

(c)) to 10−1 (panels 4.19(b) and (d)), the behaviour remains similar butthe amplitude of

the waves are slightly different. Forǫ small, the amplitude decreases slightly but forǫ

large the amplitude increases notably forũφ and decrease for̃uθ. According to Longuet-

Higgins (1968), for the fast Rossby modes the ratio between kinetic energy and total

energy is0.5 whenǫ is large, i.e. kinetic energy are in the same proportion as potential
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energy. Then the waves are more sensitive to the changes in the ǫ parameter. Whenǫ is

small, according to Longuet-Higgins (1968), the waves havemostly kinetic energy.
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ũ
θ
/s
in

θ

 

 
 ε=0.1
 ε=1
 ε=10
 ε=100

(a)α = 10−3

0 20 40 60 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

colatitude (degrees)
ũ
θ
/s
in

θ
 

 
 ε=0.1
 ε=1
 ε=10
 ε=100

(b) α = 10−1

0 20 40 60 80
−1

−0.5

0

0.5

1

1.5

colatitude (degrees)

ũ
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Figure 4.19: Numerical solution of the velocity for different values ofǫ in the fast magnetic

Rossby mode forn = 2, m = 1 andN = 50.

The behaviour of the magnetic perturbations has no major changes whenα increases

from 10−3 to 10−1 but the amplitudes decrease considerably for stronger field. As the

frequencies decrease the magnetic field becomes stronger, as shown in figure 4.20. For

this moden = 2, the azimuthal component of the magnetic field is higher thanthe

latitudinal component.
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(b) α = 10−1
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(c) α = 10−3
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Figure 4.20: Numerical solution of the magnetic field for different values of ǫ in the fast

magnetic Rossby mode forn = 2, m = 1 andN = 50.

Figure 4.21 shows the scaled height and two important facts for fast magnetic Rossby

waves are clear:

• There is equatorial trapping whenǫ is large andα has a moderate value∼ 0.1.

• The height amplitude is very small compared with the velocities and decreases

considerably whenǫ or α increase.
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Figure 4.21: Numerical solution for the scaled heightη for increasingǫ (0.1 and100) in the

fast magnetic Rossby mode forn = 2, m = 1 andN = 50.

Table 4.9 is an example of the first fast moden = 2, whenm = 2. These waves have more

nodes in longitude. In addition, whenα is small solutions correspond to the Associated

Legendre polynomials. These eigenvalues are always real. The values for largeα can be

predicted by the asymptotic theory form = 2. The waves for largeα are polar trapped.
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Table 4.9: Eigenvalues fast magnetic Rossby modes for different values ofα andǫ, n = 2

N = 50 andm = 2: waves travelling westward.

α 10−3 10−2 10−1 1 101 102 103

ǫ = 0.01 -0.33331 -0.3341 -0.39997 -1.80799 -15.9209 -63.6549 -200.49622

ǫ = 0.1 -0.33299 -0.33378 -0.39971 -1.80657 -11.5124 -36.0576 -111.97047

ǫ = 1 -0.32991 -0.33071 -0.39714 -1.79058 -6.81047 -20.5035 ****

ǫ = 10 -0.30562 -0.30648 -0.37713 -1.58640 -4.08217 -11.7911 ****

ǫ = 100 -0.22998 -0.23115 -0.31886 -1.26152 -2.55842 **** ****

4.2.2 Slow Magnetic Rossby Waves

Solving the eigenvalue problem, we found numerically that the smallest and positive

frequencies correspond to slow magnetic Rossby waves, travelling to the east. We select

the azimuthal wavenumbersm = 1 andm = 2 to illustrate clearly the properties of slow

magnetic Rossby waves. The first mode corresponds ton = 2 in the formula (4.3), for

n = 1, the value ofλ is equal to zero.

Then, the table 4.10 shows the numerical results for the normalized frequencyλ, for

n = 2 andm = 1. For a weak magnetic field the eigenvalues do not change with the

rotation parameterǫ, except whenα is 0.1 andǫ is large. Beforeα = 0.5, the waves are

subalfvénic and afterα = 0.5, enter in a new regime: the modes grow and then become

negative to coalesce with the corresponding second fast magnetic Rossby mode and an

unstable mode branches off. Because the frequency changes its sign, there is a solution

for λ = 0, corresponding to a stationary solution of the linear equations, it is possible

that steady nonlinear solutions exist in the neighbourhoodof this point.
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Table 4.10: Eigenvalues for different values ofα and ǫ, for N = 50 andm = 1. Slow

magnetic Rossby Moden = 2 : Waves travelling eastward.

α 10−3 10−2 10−1 1 101 102 103

ǫ = 0.01 4× 10−6 0.00039904 0.033322 0.73319 4.7293 -0.482+92.7i -0.498+992.9i

ǫ = 0.1 4× 10−6 0.000399 0.033222 0.69392 -0.443+7.5i -0.494+97.7i -0.499+997.8i

ǫ = 1 4× 10−6 0.000399 0.032244 0.2865461 -0.482 + 9.3i -0.498 + 99.3i -0.500 + 999.1i

ǫ = 10 4× 10−6 0.000397 0.024642 -0.437+ 0.6i -0.494 + 9.8i -0.499 + 99.8i -0.500 + 999.3i

ǫ = 100 4× 10−6 0.00038 0.004171 -0.480 + 0.8i -0.498 + 9.9i -0.500 + 99.9i -0.500+ 999.3i

In figure 4.22, the moden = 2 has been plotted for a weak field (α = 10−3) and moderate

field (α = 10−1). One striking feature of these waves is that they are not trapped at the

equator. On the other hand, the panels 4.22(a) and (c) show that the rotation parameter

does not have effects on this mode when the magnetic field is weak. Increasing the

field, in panels 4.22(b) and (d), the rotation becomes important, and whenǫ increases the

amplitude of the velocity decreases.
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Figure 4.22: Numerical solution for the velocity for different values ofǫ in the slow

magnetic Rossby mode forn = 2, m = 1 andN = 50. Note that in the left panel, all

curves lie on top of each other.

Another major aspect of slow magnetic Rossby waves, is that the amplitude of the

magnetic field is high with respect to the velocity, see figure4.23. Due to the fact that the

magnetic field is proportional to the velocity and inverse with the frequency, then if slow

magnetic Rossby waves have the shortest frequencies, the magnetic perturbations will be

the highest in amplitude. Also, we note in figure 4.23(b) and (d) that the amplitude of the

field for a moderate value ofα = 0.1 increases withǫ, unlike the velocity.
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Figure 4.23: Numerical solution for the magnetic field for different values ofǫ in the slow

magnetic Rossby mode forn = 2, m = 1 andN = 50. All curves at10−3 lie on top of each

other.

In figure 4.24, the scaled height is shown, forn = 2 slow magnetic Rossby waves.

The eigenfunctions corresponds to the Legendre polynomials and are not trapped at the

equator. We note that for a weak field, in panels 4.24(a) and (c) the height of the layer

is very small compared to the magnitude of the velocities, increasingα to 0.1, the height

also increase in two orders of magnitude.
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Figure 4.24: Numerical solution for the scaled heightη for increasingǫ (0.01 and100) in

the slow magnetic Rossby mode forn = 2, m = 1 andN = 50.

The next slow moden = 3 for m = 1 satisfies the relation (4.3) whenα is small. In the

cases whereα > 0.5 the mode grows, after that becomes negative and then collides with

the magnetic fast Rossby moden = 3, as an unstable mode, see table 4.11.
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Table 4.11: Eigenvaluesλ for different values ofα andǫ, for N = 50 andm = 1. Slow

magnetic Rossby waven = 3 : Waves travelling eastward.

α 10−3 10−2 10−1 1 101 102 103

ǫ = 0.01 9.999× 10−6 9.883× 10−4 0.05867 0.8701 8.010 -0.4747+62.6i -0.4832+93.2i

ǫ = 0.1 9.999× 10−6 9.882× 10−4 0.05854 0.8518 2.342 -0.4832+93.2i -0.4994+997.8i

ǫ = 1 9.999× 10−6 9.875× 10−4 0.05733 0.6902 -0.4467+7.7i -0.4947 + 97.9i -0.4988 + 997.0i

ǫ = 10 9.998× 10−6 9.809× 10−4 0.04778 0.09633 -0.4832 + 9.3i -0.4983 + 99.3i -0.4988 + 997.5i

ǫ = 100 9.991× 10−6 9.217× 10−4 0.02041 -0.4408+0.63 i -0.4947 + 9.77 i -0.4988 + 99.7i -0.4988+ 997.6 i

Another example of slow magnetic Rossby waves is illustrated in figure 4.25. If the fluid

is immersed in a weak field, the wave is not affected by rotation, when the field increases

the rotation modify slightly the wave form and the frequency. The panels 4.25(b) and

(d), show that these waves undergo polar trapping forα = 0.1 and ǫ large. Also it is

evident that in the panels 4.26(b) and (d), the wave undergoes polar trapping forǫ large

andα = 0.1.
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Figure 4.25: Numerical solution for the velocity for different values ofǫ in the slow

magnetic Rossby mode forn = 3, m = 1 andN = 50. All curves at10−3 lie on top

of each other.
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(b) α = 10−1
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Figure 4.26: Numerical solution for the magnetic field for different values ofǫ in the slow

magnetic Rossby mode forn = 3, m = 1 andN = 50. All curves at10−3 lie on top of each

other.

Figure 4.27 reveals that slow magnetic Rossby waves are not equatorially trapped, at

large or smallα or ǫ. In contrast, the perturbation moves poleward whenα is 0.1 andǫ is

large.
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Figure 4.27: Numerical solution for the scaled heightη for increasingǫ (0.01 and100) in

the slow magnetic Rossby mode forn = 3, m = 1 andN = 50.

This is certainly true in the case, whenm = 2, the eigenvalues are real and there is no

instability, as shown in table 4.12 for all the range inǫ orα. Another significant aspect of

the value ofλ for slow magnetic Rossby waves is that the frequency is in thesubalfvénic

regime|λ| < mα. For smallα, the values are given by the formula (4.3) forn = 2 and

m = 2, sinceλ is directly proportional tom, it is clear that the values of this table are

double that of the eigenvalues in table 4.10, wheren = 2 andm = 1. The largeα results

are proportional toα.

Figure 4.28 demonstrates that for slow magnetic Rossby waves in a weak field the

rotation does not have a significant effect on the oscillations. But for a moderate value
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Table 4.12: Eigenvalues for different values ofα andǫ, n = 2, andm = 2, an eastward

slow magnetic Rossby mode.

α 10−3 10−2 10−1 1 101 102 103

ǫ = 0.01 7.9998 × 10−6 0.00079809 0.066664 1.4738 15.48 62.705 199.5

ǫ = 0.1 7.9998 × 10−6 0.00079808 0.066641 1.4649 10.677 35.073 111.97040

ǫ = 1 7.9998 × 10−6 0.00079804 0.066408 1.3557 5.8606 19.508 ****

ǫ = 10 7.9998 × 10−6 0.00079764 0.064068 0.76454 3.098 10.758 ****

ǫ = 100 7.9994 × 10−6 0.00079356 0.044464 0.31526 1.5634 **** ****

of α = 0.1, the waves are slightly shifted to the poles whenǫ is large. For the first

moden = 2, m = 2, the northward velocity is symmetric with respect to the equator,

conversely, the azimuthal velocity is antisymmetric.
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Figure 4.28: Numerical solution for different values ofǫ in the slow magnetic Rossby mode

for n = 2, m = 2 andN = 50. All curves at10−3 lie on top of each other.

Figure 4.29 for the scaled heightη shows that form = 2, there are more longitudinal

nodes and for a weak field the solutions are not trapped at the equator, even thoughǫ is

large. Then for moderate magnetic fields, the polar trappingbecomes evident.
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Figure 4.29: Numerical solution for the scaled heightη for increasingǫ (0.01 and100) in

the slow magnetic Rossby mode forn = 2, m = 2 andN = 50.

In table 4.13, the eigenvalues are tabulated for the second slow magnetic Rossby wave,

n = 3, m = 2. The eigenvalues for smallα can be calculated with the formula (4.3). All

of these modes are real and for largeα and smallǫ, the value ofλ are proportional toα.

All of these frequencies remain in the sufalvénic regime.
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Table 4.13: Eigenvalues for different values ofα andǫ, n = 3, N = 50 andm = 2.Slow

magnetic Rossby modes: Waves travelling eastward.

α 10−3 10−2 10−1 1 101 102 103

ǫ = 0.01 2× 10−5 0.001977 0.117341 1.741586 16.5706 62.70506 199.5012

ǫ = 0.1 2× 10−5 0.001976 0.117174 1.716517 10.67918 35.07343 112.3185

ǫ = 1 2× 10−5 0.001976 0.115525 1.463803 5.860625 19.5085 76.69158

ǫ = 10 2× 10−5 0.001967 0.101004 0.764634 3.097991 10.79252 71.02618

ǫ = 100 2× 10−5 0.001884 0.048614 0.31526 1.563428 7.2357 70.42379

In fact, for the second moden = 3 andm = 2 the northward velocity is antisymmetric

and the azimuthal velocity is symmetric, see figure 4.30. Again, the variation in the

rotation parameter does not affect the oscillation for a weak field, but when the field is

moderate andǫ increases, the solutions are more concentrated at high latitudes.
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ũ
θ
/s

in
θ

 

 

 ε=0.1
 ε=1
 ε=10
 ε=100

(a)α = 10−3

0 20 40 60 80
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

colatitude (degrees)

ũ
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Figure 4.30: Numerical solution of the velocity for different values ofǫ in the slow magnetic

Rossby mode forn = 3, m = 2 andN = 50. All curves at10−3 lie on top of each other.

Figure 4.31 shows the effect of the rotation parameter on thewaves. For smallα, the

effect is imperceptible, but for largeǫ, the wave is moved poleward. It is clear that here

the slow magnetic Rossby waves are not equatorially trappedand are produced by the

effect of the magnetic field.
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Figure 4.31: Numerical solution for the scaled heightη for increasingǫ (0.01 and100) in

the slow magnetic Rossby mode forn = 3, m = 2 andN = 50.

4.3 Anomalous Mode

In the numerical results a new mode was found in the presence of the magnetic field,

propagating westward. It is a very slow wave which we call “anomalous”, this is the first

slow magnetic Rossby mode. This mode collides with the first fast magnetic Rossby

waven = 1 and the wave becomes unstable, see chapter 5. This instability occurs only

for m = 1. The normalized frequency is summarized in table 4.14, these numerical

results show the frequency of the anomalous mode increases linearly withǫ andα4.
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Table 4.14: Eigenvalues for different values ofα andǫ, m = 1, andn = 1, the anomalous

westward slow magnetic Rossby mode.

α 10
−3

10
−2

10
−1 1 10

1
10

2
10

3

ǫ = 0.01 **** −1.88 × 10
−10

−2.00 × 10
−7

−2.01 × 10
−3 -0.301+3.19i -0.482 +92.7i -0.498+992.9i

ǫ = 0.1 −1.29 × 10
−9

−2.28 × 10
−10

−2.00 × 10
−6 -0.02053 -0.442+7.48i -0.494+97.73i -0.499+997.8i

ǫ = 1 −7.47 × 10
−11

−2.34 × 10
−9

−2.00 × 10
−5 -0.294+ 0.1i -0.482 + 9.3i -0.498 + 99.3i -0.500+ 999.1i

ǫ = 10 −1.39 × 10
−10

−1.997 × 10
−8

−1.97 × 10
−4 -0.435+0.6i -0.494+ 9.8i -0.499 - 99.8i -0.500 - 999.9i

ǫ = 100 −4.41 × 10
−11

−2.00 × 10
−7 -0.00172 -0.480 + 0.8i -0.498+ 9.9i -0.500 + 99.9i -0.500 + 999.3i

The velocity field shows a small amplitude that increases with ǫ, see figure 4.32. When

the magnetic field increases, from10−2 to 10−1, the wave amplitude increases too by at

least three orders of magnitude. The northward velocity is symmetric but the azimuthal

velocity is antisymmetric. Forǫ andα small the solution corresponds toũθ = sin θ, this

is clearly shown in the panel 4.32(a).
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(c) α = 0.01
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Figure 4.32: At the top, the northward velocity for the anomalous magnetic Rossby mode

with m = 1 andN = 50. The azimuthal velocity at the bottom, with different values of ǫ.

The scaled height̃ηǫ1/2 is plotted in the figure 4.33, the amplitudes are small but it

increases withα. In these plots, it is clear that this wave is not equatorially trapped.
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(b) α = 0.1

Figure 4.33: Scaled heightηǫ1/2 for the anomalous magnetic Rossby mode withm = 1

andN = 50, with different values ofǫ.

For the anomalous mode the magnetic field behaves differently from the slow magnetic

Rossby modes (n ≥ 2), as we can see in figure 4.34. The northward component of the

field b̃θ has a shift of90◦ with respect to the velocitỹuθ and the amplitudes are higher, so

whenα increases. This anomalous mode is analysed in more detail insection 5.5 below.

4.4 Kelvin Waves

Generally, our numerical results provide three types of frequencies: gravity waves, fast

and slow magnetic Rossby waves. The high frequency gravity waves travelling to the

east has a mode that behaves differently whenǫ increases and becomes a Kelvin wave,

as the theory of Longuet-Higgins (1968) predicted. In the case of the fluid is immersed

in a weak field, i.e,α parameter is small, the eigenvalues for the Kelvin mode can also

be predicted by Longuet-Higgins (1968) theory and the formula (3.42), the numerical

values obtained forλ with the Matlab code are in table 4.15.
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(c) α = 0.01
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Figure 4.34: At the top, b̃θ/ sin θ for the anomalous magnetic Rossby mode withm = 1

andN = 50. The magnetic field̃bφ/ sin θ at the bottom, with different values ofǫ.

Table 4.15: Numerical results for eigenvaluesλ that correspond to the Kelvin mode for

N = 50 andm = 1. Waves travelling eastward.

α 10−3 10−2 10−1 1 101 102 103

ǫ = 0.01 13.9 13.9 13.9 13.9012 15.2263 100.5000 ****

ǫ = 0.1 4.2452 4.2452 4.2453 4.2649 10.4999 100.0500 ****

ǫ = 1 1.2307 1.2307 1.2323 1.4782 10.0050 **** ****

ǫ = 10 0.34457 0.34468 0.35618 1.0496 10.0050 **** ****

ǫ = 100 0.10263 0.10309 0.14257 1.005 **** **** ****
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Whenǫ is large the waves are trapped at the equator and the Northward velocity becomes

zero, as shown in figure 4.35,̃uθ velocity is smaller compared with̃uφ. When we

increase the magnetic field, the waves are more trapped, see figure 4.36, the Northward

component of the magnetic field becomes zero.

The eigenvaluesλ tends tomα, whenα andǫ are large.
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ũ
φ
/
s
in

θ

 

 

 α=0.01
 α=0.1
 α=1

(d) Azimuthal velocity forǫ = 100

Figure 4.35: Numerical calculation of the northward and azimuthal velocities for different

values ofα for the Magneto Kelvin Mode withm = 1 andN = 50.
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η    λ 0.34457  α:0.001  and ε: 10
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Figure 4.36: Numerical solution for the scaled heightη with α = 10−3 in (a) and (b). Then,

α = 1 in (c) and (d), for magneto Kelvin mode travelling eastward with m = 1 andN = 50.

In the first columnǫ = 10 andǫ = 100 for the second one.

There is a new mode travelling to the west that has a frequencyλ ∼ −mα which appears

for certain values of the magnetic parameterα, see table 4.16. This wave undergoes

equatorial trapping and the velocitỹuθ tends to zero whenα or ǫ are large, as shown in

figure 4.37, although, this Kelvin mode travelling westwardis not always present when

α > 100. It seems possible that it cannot be resolved by the number ofmodes we include

in our numerical scheme. This mode is considered further in section 5.6 below.
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Table 4.16: Numerical results for eigenvaluesλ that correspond to the Kelvin mode for

N = 50 andm = 1. Waves travelling westward.

α 1 101 102

ǫ = 0.01 **** -15.3966** -100.5000

ǫ = 0.1 **** -10.5013 ****

ǫ = 1 -1.6888** -10.050 ****

ǫ = 10 -1.0516 -10.0050 ****

ǫ = 100 -1.0050 **** ****

Values marked with ** correspond to the First mode(n = 1) of MIG waves travelling

westward.
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Figure 4.37: Numerical solution for the velocity field with different values ofǫ for the

Magneto Kelvin Mode travelling to the west withα = 1, m = 1 andN = 50.
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4.5 Summary

This chapter has reviewed the key aspects of the MHD waves forthe shallow water

system and the main results are summarized here. The analytical procedures and the

asymptotic results for them are described in the next chapter.

As previously stated, MIG waves are always stable and the frequencies are superalfvénic,

the waves are equatorially trapped forα or ǫ large. There are two exceptional Kelvin

modes which are equatorially trapped also, and their motionis almost azimuthal.

The magnetic Rossby waves form = 1, becomes unstable afterα = 0.5. The fast

modes are equatorially trapped forα moderate and large values ofǫ. On the contrary,

slow magnetic Rossby modes are not equatorially trapped. These modes always remain

subalfvénic. A new anomalous slow mode travelling to the west is present. Ifm 6= 1 the

magnetic Rossby waves are stable. For largeǫ andα their frequencies are subalfvénic

and undergo polar trapping.
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Chapter 5

Magnetohydrodynamics: Analytical

Approach

In this chapter, we derive analytical expressions for the solutions valid in certain

asymptotic regions of the parameter space, based on observations of the numerical results

of chapter 4 to determine the behaviour and the values of the frequencies for each set of

waves. In general these results are our original contribution to the solution of the problem.

We start from the ordinary differential equation formula (2.64) for ũθ, derived in chapter

2, i.e.

(1− µ2)
d2ũθ

dµ2
+

2m2

[(λ2 −m2α2)ǫ(1− µ2)−m2]
µ
dũθ

dµ
+
{

ǫ(λ2 −m2α2)

−m(λ + 2mα2)

(λ2 −m2α2)
− ǫ(λ+ 2mα2)2µ2

(λ2 −m2α2)
− m2

(1− µ2)
− 2ǫm(λ + 2mα2)µ2

[(λ2 −m2α2)ǫ(1− µ2)−m2]

}

ũθ = 0.

Based on observations from our numerical results, described in the previous chapter, we

derive some asymptotic theories that can explain the behaviour of the waves in the limits

when the parameters are large or small.
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5.1 Asymptotic Theory for Magneto-Inertial Gravity

Waves and Fast Magnetic Rossby Waves whenǫα2 ≫

1

The magneto-inertial gravity waves are trapped at the equator whenǫ is large for all

values of the magnetic parameter,α, and the fast magnetic Rossby waves are equatorially

trapped whenǫ is large andα has a moderate value around0.1. This behaviour has

been pointed out for hydrodynamic solutions by many authors(Matsuno, 1966, Longuet-

Higgins, 1968). In general terms, equatorially trapped waves implies that the solution is

confined to a region whereµ = cos θ is small. Sinceµ is small andǫ is large the factor

[ǫ(λ2−m2α2)(1−µ2)−m2] tends to∼ ǫ(λ2−m2α2). Then the equation (2.64) becomes:

d2ũθ

dµ2
+

{

(λ2 −m2α2)ǫ− m(λ + 2mα2)

(λ2 −m2α2)

}

ũθ −
ǫ(λ+ 2mα2)2

(λ2 −m2α2)
µ2ũθ = 0. (5.1)

We introduce a scalingµ = 1√
2

[

(λ2−m2α2)
ǫ(λ+2mα2)2

]1/4

µ̂, and define a scale factor

s ≡
√
2

[

ǫ(λ+ 2mα2)2

(λ2 −m2α2)

]1/4

so µ̂ = sµ.

Since the waves are equatorially trapped,the factor scale must bes ≫ 1 for the

asymptotic theory to be valid, if this condition is not satisfied the solution is discarded.

For this scaling, the differential operator must be

d

dµ
=

√
2

[

ǫ(λ+ 2mα2)2

(λ2 −m2α2)

]1/4
d

dµ̂
,

and the rescaled equation becomes

d2ũθ

dµ̂2
+
1

2

[

(λ2 −m2α2)

ǫ(λ+ 2mα2)2

]1/2{

(λ2−m2α2)ǫ−m(λ + 2mα2)

(λ2 −m2α2)

}

ũθ−
1

4
µ̂2ũθ = 0. (5.2)

This equation corresponds to the standard Parabolic Cylinder Differential equation,

where

1

2

[

(λ2 −m2α2)

ǫ(λ + 2mα2)2

]1/2{

(λ2 −m2α2)ǫ− m(λ + 2mα2)

(λ2 −m2α2)

}

= ν +
1

2
, (5.3)



Chapter 5. Magnetohydrodynamics: Analytical Approach 121

for ν = 0, 1, 2.... The solutions of̃uθ for this differential equation are given byDν(µ̂) and

D−ν−1(µ̂e
iπ/2), whereDν(µ̂) is the parabolic cylinder function, defined by Abramowitz

and Stegun (1964). TheD−ν−1(µ̂e
iπ/2) solution goes to infinity at largêµ and so must be

discarded. The first solutions ofDν(µ̂) are, forν = 0,

ũθ = e−
1

4
s2µ2

.

Whenν = 1, the solution will be

ũθ = sµe−
1

4
s2µ2

,

and forν = 2, the function must be

ũθ = (s2µ2 − 1)e−
1

4
s2µ2

.

The asymptotic solutions forν = 0 are plotted in the figure 5.1. For high values ofα and

ǫ the eigenfunctions become trapped at the equator.
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Figure 5.1: Asymptotic even solutions for equation (5.1) for differentvalues ofα, for ν = 0

with m = 1. The first panel corresponds toα = 10, andα = 100 for the second one.

The eigenvalues calculated with the numerical solution of formula 5.3 agree with

the numerical calculations made previously in chapter 4. When the eigenfunctions
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are equatorially trapped, hence the factor scale must bemuch greater than 1. The

eigenfunctions in figure 5.1 describe perfectly the equatorially trapped behaviour, forǫ

greater than0.01 whenα = 10. In order to calculate these eigenfunctions, the truncation

N must be very large. For example, ifα = 10 andǫ = 100, the scale factor is∼ 38.8.

Whenα = 100 and ǫ = 100 the factor will be∼ 178.1. This means that we need a

truncation number,N , which is 5 times larger than that whenα is 10 in order to resolve

the solutions. Our code with the method of the eigenvalues inMatlab is not able to

compute this because the matrices are too large, but at largeα or ǫ the asymptotic theory

is very accurate.

5.1.1 Dispersion relation and eigenvalues

The dispersion relation of the waves givesλ as a function ofǫ, m andα, which are given

parameters in our case. It can be found that expression (5.3)can be written as

ǫ(λ2 −m2α2)2 −m(λ+ 2mα2) = (2ν + 1)(λ+ 2mα2)(λ2 −m2α2)1/2ǫ1/2. (5.4)

This expression must haveλ ∼ ±mα, as is shown in the numerical results, in the limit

whenǫα2 ≫ 1.

Let λ = δ +mα , andδ ≪ mα. In this approximation,(λ2 −m2α2) = (λ−mα)(λ +

mα) = δ(δ + 2mα) ∼ 2mαδ.

Sinceδ ≪ mα, to leading order(α ≫ 1), equation (5.4) becomes

δ2 − (2ν + 1)

(

α

2mǫ

)1/2

δ1/2 − 1

2ǫ
= 0. (5.5)

Neglecting the last term, becauseǫ is large, we have

δ2 − (2ν + 1)

(

α

2mǫ

)1/2

δ1/2 = 0. (5.6)

Therefore, the approximate solution forδ is

δ = (2ν + 1)2/3
(

α

2mǫ

)1/3

. (5.7)
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These are a sequence of symmetric and antisymmetric solutions with respect to the

equator. The dispersion relation for largeǫ becomes

λ = (2ν + 1)2/3
(

α

2mǫ

)1/3

+mα. (5.8)

The solutions for waves travelling westward in this approximation must be the same as

for eastward waves but with an opposite sign by takingλ = −δ −mα.

In order to obtain more accurate results for the eigenvalueswith the formula (5.8), we

have to improve our first order approximation by going to higher order.

Second order approximation for the solutions of equation(5.3): MIG waves

travelling eastward

Initially, we arrange equation (5.3), to be solved analytically for the case of largeα and/or

largeǫ

(λ2 −m2α2)1/2
{

(λ2 −m2α2)ǫ− m(λ + 2mα2)

(λ2 −m2α2)

}

= (2ν + 1)ǫ1/2(λ+ 2mα2). (5.9)

Substituteλ = mα+ δ, for eastward propagating waves, whereδ is very small compared

with mα, motivated by the numerical results in chapter 4. The factors become

λ2 −m2α2 ∼ 2mαδ
(

1 +
δ

2mα

)

, and λ+ 2mα2 ∼ 2mα2
(

1 +
1

2α
+

δ

2mα2

)

.

After a sequence of algebraic steps, the equation (5.9) turns into

δ2
(

1+
3δ

4mα

)

− 1

2ǫ

(

1+
1

2α
+

δ

2mα2

)(

1− δ

4mα

)

=
(2ν + 1)α1/2

(2mǫ)1/2
δ1/2
(

1+
1

2α
+

δ

2mα2

)

.

(5.10)

Retaining the orderO(1) terms of the expression (5.10), the second term and terms of

orderO(α−1) are neglected. Hence, to first order inδ ∼ δ0, we have

δ20 =
(2ν + 1)α1/2

(2mǫ)1/2
δ
1/2
0 . (5.11)
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In the first order approximation, an expression forδ is

δ0 =
(2ν + 1)3/2α1/3

(2mǫ)1/3
, (5.12)

and so theδ term represents the deviation from the Alfvén speed which increases withα

and decreases withǫ. This is also the formula (5.7) obtained previously.

In a second order approximation forδ, we add a smaller amountδ1 and neglect terms

with O(α−2),

δ = δ0 + δ1 and
δ

2mα2
≪ 1

2α
.

Substitutingδ = δ0 + δ1 andδ2 = δ20

(

1 + 2δ1
δ0

)

into the equation (5.10), we obtain

δ20

(

1 +
2δ1
δ0

)[

1 +
3δ0
4mα

(

1 +
δ1
δ0

)

]

− 1

2ǫ

(

1 +
1

2α

)[

1 +
δ0

4mα

(

1 +
δ1
δ0

)

]

= δ20

(

1 +
1

2α

)(

1 +
δ1
2δ0

)

. (5.13)

Neglecting the termsO(ǫ−1α−1), O(δ1δ0α
−1) andO(δ1δ

2
0α

−1) or similar higher orders,

equation (5.13) reduces to

3δ30
mα

+
3

2
δ0δ1 −

1

2ǫ
=

δ2

2α
. (5.14)

Solving this equation forδ1

δ1 =
1

3ǫδ0
+

δ0
3α

− δ20
2mα

. (5.15)

substitutingδ0 into the equation (5.15), the expression becomes

δ1 =
(2m)1/3

3(2ν + 1)2/3ǫ2/3α1/3
+

(2ν + 1)2/3

3(2mǫ)1/3α2/3
− (2ν + 1)4/3

2mα1/3(2mǫ)2/3
. (5.16)

When ǫ and α are large, the dispersion relation for magneto-inertial gravity waves

propagating to the east is

λ = mα+(2ν+1)2/3
(

α

2mǫ

)1/3

+
(2m)1/3

3(2ν + 1)2/3ǫ2/3α1/3

[

1−3(2ν + 1)2

4m2

]

+
(2ν + 1)2/3

3(2mǫ)1/3α2/3
.

(5.17)
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which is accurate toO(α−2/3). The value ofλ is calculated with the formula (5.17) for

m = 1 andν = 0 reported in the table 5.1; the results are in agreement with the numerical

results of table 4.3 of chapter 4,except for the first value in the first row, because this

solution is not equatorially trapped and does not satisfy the conditionǫα2 >> 1.

Table 5.1: Calculation ofλ with the formula (5.17) forν = 0 andm = 1.

α 101 102 103

ǫ = 0.01 19.2515 117.6441 1037.1

ǫ = 0.1 14.0330 108.0685 1017.2

ǫ = 1 11.8157 103.7189 1008.0

ǫ = 10 10.8307 101.7205 1003.7

ǫ = 100 10.3829 100.7974 1001.7

Second order approximation for the solutions of equation 5.3: MIG waves travelling

westward

We follow the same mathematical steps as in the previous section. Equation (5.3) is

solved analytically forǫα2 ≫ 1, whenλ = −mα − δ, whereδ is very small compared

to mα. This behaviour is also observed in westward propagating MIG waves, in chapter

4. Hence, the factors are

λ2 −m2α2 ∼ 2mαδ
(

1 +
δ

2mα

)

, and λ+ 2mα2 ∼ 2mα2
(

1− 1

2α
− δ

2mα2

)

.

Substituting the expressions in the equation (5.9), we obtain

δ2
(

1+
3δ

4mα

)

− 1

2ǫ

(

1− 1

2α
− δ

2mα2

)(

1− δ

4mα

)

=
(2ν + 1)α1/2

(2mǫ)1/2
δ1/2
(

1− 1

2α
− δ

2mα2

)

.

(5.18)

The first order approximation neglects the second term and terms of orderO(α−1) in the

expression (5.18). Therefore, to first order inδ ∼ δ0, we have the same expression as for
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eastward propagating MIG waves

δ20 =
(2ν + 1)α1/2

(2mǫ)1/2
δ
1/2
0 . (5.19)

The deviation from the Alfvén speed,δ, in the first order approximation is again

δ0 =
(2ν + 1)3/2α1/3

(2mǫ)1/3
. (5.20)

Now, a second order approximation forδ is developed here, we add a smaller amountδ1

and neglect terms withO(α−2),

δ = δ0 + δ1 and
δ

2mα2
≪ 1

2α
.

The second order equation forδ = δ0 + δ1 andδ2 = δ20

(

1 + 2δ1
δ0

)

turns the equation

(5.18) into

δ20

(

1+
2δ1
δ0

)[

1+
3δ0
4mα

+
3δ1
4mα

]

− 1

2ǫ

(

1− 1

2α

)[

1− δ0
4mα

− δ1
4mα

]

= δ20

(

1− 1

2α

)(

1+
δ1
2δ0

)

.

(5.21)

The termsO(ǫ−1α−1), O(δ1δ0α
−1) andO(δ1δ

2
0α

−1) or similar higher orders will be

neglected here and the equation (5.21) reduces to

3δ30
4mα

+
3

2
δ0δ1 −

1

2ǫ
= − δ20

2α
. (5.22)

Consequently, the expression forδ1 is

δ1 =
1

3ǫδ0
− δ0

3α
− δ20

2mα
. (5.23)

Substitutingδ0 into the equation (5.23), the expression becomes

δ1 =
(2m)1/3

3(2ν + 1)2/3ǫ2/3α1/3
− (2ν + 1)2/3

3(2mǫ)1/3α2/3
− (2ν + 1)4/3

(2m)5/2ǫ2/3α1/3
. (5.24)

In the limit of largeǫ andα, the MIG waves are equatorially trapped and the dispersion

relation for the westward Magneto-inertial gravity waves is

λ = −mα−(2ν+1)2/3
(

α

2mǫ

)1/3

− (2m)1/3

3(2ν + 1)2/3ǫ2/3α1/3

[

1−3(2ν + 1)2

4m2

]

+
(2ν + 1)2/3

3(2mǫ)1/3α2/3
,

(5.25)
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which is the analogous to the formula (5.17) for waves propagating eastward except that

for the westward waves the last term is also positive, which gives a difference in the

values between eastward and westward frequencies.

Table 5.2 shows a comparison between the results of the formula (5.25) and the

numerical calculations in table 4.4 in chapter 4. The results are accurate and provide

a good asymptotic formula when the code is not able to calculate the eigenvalues,except

for the first value in the first row which does not satisfy the condition ǫα2 ≫ 1 and the

solution is not equatorially trapped.

Table 5.2: Calculation ofλ with the formula (5.25) forν = 0 andm = 1.

α 101 102 103

ǫ = 0.01 -18.7224 -117.5301 -1037.1

ǫ = 0.1 -13.7874 -108.0155 -1017.1

ǫ = 1 -11.7017 -103.6944 -1007.9

ǫ = 10 -10.7777 -101.7091 -1003.7

ǫ = 100 -10.3584 -100.7921 -1001.7

Second order approximation for the solutions of equation 5.3: Fast magnetic Rossby

waves travelling westward.

The fast magnetic Rossby waves tend to be confined at the equator for largeǫ and also

moderate values ofα, as demonstrated by the numerical results in chapter 4. The values

of α for equatorial trapping are between0.1 and0.5. After α = 0.5, the frequency of the

wave becomes subalfvénic and complex at certain point (as discussed in the next chapter).

In the regimeα < 0.5, λ remains superalfvénic and|λ| > mα, except whenα is near

0.5, this behaviour will be discussed later in section 5.2. Since, the fast magnetic Rossby

waves have these features, the factor(λ2 −m2α2) is always positive andm(λ + 2mα2)
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is always negative. Hence

(λ2 −m2α2)ǫ ≪ −m(λ+ 2mα2)

(λ2 −m2α2)
. (5.26)

Then, the equation (5.3) reduces to

−1

2

[

(λ2 −m2α2)

ǫ(λ+ 2mα2)2

]1/2
m(λ+ 2mα2)

(λ2 −m2α2)
= ν +

1

2
. (5.27)

Simplifying the equation, the result is

λ2 −m2α2 =
m2

(2ν + 1)2ǫ
. (5.28)

The quadratic (5.28) has two roots, only the negative root isvalid, because the condition

(5.26) must be satisfied. The dispersion relation for fast magnetic Rossby waves is

therefore

λ = −mα − m

2ǫα(2ν + 1)2
. (5.29)

Using the formula (5.29), we obtain reasonable values ofλ, whenǫ is large but the values

for ǫ ≤ 10 are inaccurate, see table 5.3. This discrepancy can be attributed to the fact that

for ǫ ≤ 10 the waves are not equatorially trapped and this theory does not apply in this

case.

Table 5.3: Asymptotic solution forλ obtained with the equation (5.29) forν = 1 and the

numerical calculation forN = 50. In both cases:α = 0.1 andm = 1.

Equation (5.29) λnum

ǫ = 1 -0.655555 -0.1886

ǫ = 10 -0.1555556 -0.1408

ǫ = 100 -0.1055556 -0.1054

Numerical solutions for equation 5.4

In order to solve equation (5.4) numerically, we square bothsides of this equation, and

obtain an eighth order equation, for solving with MATLAB, finding the roots of the
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polynomial. Then, the equation is

ǫ2λ8 − 4m2α2ǫ2λ6 − 2mǫλ5 + [6m4α4ǫ− 4m2α2ǫ− (2ν + 1)2ǫ]λ4

+[4m3α2ǫ− 4(2ν + 1)2mα2ǫ]λ3

+[m2 − 4m6α6ǫ2 + 8m4α4ǫ+ (2ν + 1)2m2α2ǫ(1− 4α2)]λ2

+[4m3α2 − 2m5α4ǫ+ 4(2ν + 1)2m3α4ǫ]λ1

+[m8α8ǫ2 − 4m6α6ǫ+ 4m4α4 + 4(2ν + 1)2m4α6ǫ] = 0. (5.30)

In table 5.4 the positive root of the equation (5.30) is reported, this is the second Magneto-

inertial gravity mode (n = 2) for m = 1. We compare the results of this table for the

asymptotic theory with the eigenvalues obtained with the eigenvalues code of Matlab, see

table 4.3, there is good agreement between this asymptotic solution and the numerical

method. Although there is a difference in the values ofλ (underlined values)whenα <

0.1 andǫ < 1, this inconsistency may be due to that the scale factor is less than1, see

table 5.5, and also smallǫα2 < 1 then this theory is not applicable in this regime.

Table 5.4: Eigenvaluesλ for different values ofα and ǫ, as numerical results of solving

equation (5.30) forν = 0 andm = 1. Asymptotic solution.

α 10−3 10−2 10−1 1 101 102 103

ǫ = 0.01 5.3549 5.355 5.3637 6.0784 18.308 117.45 1037.1

ǫ = 0.1 2.6371 2.6372 2.6475 3.3806 13.896 108.05 1017.2

ǫ = 1 1.3247 1.3249 1.3381 2.102 11.799 103.72 1007.9

ǫ = 10 0.68056 0.68075 0.69917 1.5044 10.829 101.72 1003.7

ǫ = 100 0.35771 0.358 0.38501 1.2303 10.383 100.8 1001.7
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Table 5.5: Scale factor for different values ofα and ǫ, of the first numerical solution of

equation (5.30) forν = 0 andm = 1.

α 10−3 10−2 10−1 1 101 102 103

ǫ = 0.01 0.44721 0.44722 0.44809 0.51911 1.6873 8.0814 38.166

ǫ = 0.1 0.79527 0.7953 0.79855 1.0265 3.7445 17.63 82.486

ǫ = 1 1.4142 1.4143 1.4267 2.1065 8.2243 38.226 177.98

ǫ = 10 2.5149 2.5154 2.5638 4.4406 17.914 82.612 383.71

ǫ = 100 4.4722 4.4743 4.6676 9.4946 38.813 178.24 826.94

Figure 5.2 shows the scale factor for different values of themagnetic parameterα. In the

limit of α small the scale factor is
√
2ǫ1/4 and forα large it is proportional to(ǫα3)1/4.
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Figure 5.2: Plot of the scale factor of the first solution for different values ofα, for ν = 0

with m = 1. The first column corresponds to calculations forα = 0.1 to α = 1000, the

second one shows the results for small values ofα.

There are 8 solutions for equation (5.30) but just 4 solutions are valid. We take the

solutions whereA = ν + 1/2

A =
1

2

[

(λ2 −m2α2)

ǫ(λ+ 2mα2)2

]1/2{

(λ2 −m2α2)ǫ− m(λ+ 2mα2)

(λ2 −m2α2)

}

.
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Three type of waves can be identified: MIG waves travelling eastward and westward and

the fast magnetic Rossby wave travels to the west. Particularly, the fast magnetic Rossby

mode will disappear whenα > 0.1, and our solutions reduce to two real roots, the table

5.6 illustrates this point clearly. Whenα greater than 1, this is evident from the numerical

results (section 4.2) that magnetic Rossby waves experience confinement at the poles.

Table 5.6: Numerical solution of the eigenvaluesλ solving equation (5.30) whenǫ = 100

andm = 1.

α 0.1 10

ν = 0

0.38501 10.383

-0.26206 -10.358

-0.15025

ν = 1

0.58571 10.768

-0.53412 -10.717

-0.10542

Table 5.7: Eigenvaluesλ calculated with the method described in section 2.4 withǫ = 100,

m = 1 andN = 50.

α 0.1 10

n = 2

0.4042 10.383

-0.2877 -10.358

-0.1020

n = 3

0.5959 10.769

-0.5322 -10.717

-0.1054

In table 5.7 we compare the numerical solution of equation (5.30) with the eigenvalues

obtained with our numerical method (section 2.4), the values in color blue are fast
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magnetic Rossby modes.There is again agreement between this asymptotic solution

and the eigenvalues numerical method if the value of the scale factor iss ≫ 1.

5.2 Behaviour of Fast Magnetic Rossby Waves nearα =

0.5

As mentioned in chapter 4, there is a value ofα that divides two different regimes where

magnetic Rossby modes change from stable to unstable behaviour. So, the following is

a mathematical description of the solutions whenα = 0.5. To determine the behaviour

whenα is near0.5, we considerα = 1/2 + α̂ where|α̂| ≪ 1, i.e. very close toα = 1/2

andλ = −m/2+ δ̂ when|δ̂| ≪ 1. We also assumeǫα̂ ≪ 1 andǫδ̂ ≪ 1. Then the factors

of the equation (2.64) become

λ2 −m2α2 ∼ −m2α̂−mδ̂ +O(α̂2),

λ+ 2mα2 ∼ δ̂ + 2mα̂ +O(α̂2),

(λ2 −m2α2)ǫ(1− µ2) ≪ m2.

Becausem is order1, the differential equation (2.64) reduces to

(1− µ2)
d2ũθ

dµ2
− 2µ

dũθ

dµ
+
{(δ̂ + 2mα̂)

(δ̂ +mα̂)
− m2

(1− µ2)
+O(α̂)

}

ũθ = 0. (5.31)

This is the Associated Legendre differential equation, with solutions

ũθ = Pm
n (µ) with n(n + 1) =

(δ̂ + 2mα̂)

(δ̂ +mα̂)
.

Hence,

δ̂ = −mα̂[n(n + 1)− 2]

[n(n + 1)− 1]
. (5.32)

Therefore, nearα = 0.5, the dispersion relation for fast magnetic Rossby waves is:

λ = −m

2
− mα̂[n(n + 1)− 2]

[n(n + 1)− 1]
. (5.33)
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Note that, ifn = 1, thenδ̂ = 0. In particular this case is singular, we need to go to higher

order.

Let us now considern = 2 andm = 1 which illustrates the behaviour clearly, so

δ̂ = −4

5
α̂.

Consequently, in the neighbourhood ofα = 0.5, the dispersion relation for fast magnetic

Rossby waves is:

λ = −1

2
− 4

5
(
1

2
− α). (5.34)

The numerical results forλ are reported in the table 5.8. Ifα = 0.498 the formula (5.34)

givesλ = −0.4984 and forα = 0.502 thenλ = −0.5016. These values are independent

of ǫ. The asymptotic formula (5.34) agrees well with the numerical results, especially

whenǫ is small, see table 5.8.

Table 5.8: Numerical results for eigenvaluesλ with n = 2, m = 1 andN = 50.

α 0.498 0.502

ǫ = 0.01 -0.4984001 -0.5016001

ǫ = 1 -0.4983995 -0.5015995

ǫ = 100 -0.4983422 -0.5015300

5.3 Asymptotic Theory for Stable Modes Trapped at the

Polem ≥ 3

Let us now consider the behaviour of stable modes when the magnetic parameter,α, is

large. The theory explains the limit case for the eigenvalues and analytic solutions for

the eigenfunctions. Fast magnetic Rossby waves and slow magnetic Rossby waves are
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expected to be unstable whenα > 0.5 andm = 1. If m is different from1 the magnetic

Rossby modes are stable and the values of the eigenvalues andthe eigenfunctions can be

predicted for this problem form ≥ 3. The casem = 2 is dealt with in section 5.4 below.

In general, the magnetic Rossby waves are the result of balance between the Coriolis

force and the magnetic tension and have a magnetic origin. They undergo polar trapping

for largeα andǫ, and the waves become concentrated in a small region near thepoles.

The eigenfunction for a fast magnetic Rossby wave (m = 3) illustrates the polar

trapping, in figure 5.3, waves are more trapped asǫ andα increase. Heng and Spitkovsky

(2009) have described this feature for magnetostrophic modes, in their formulation

for shallow water model with a basic state for the magnetic field as a radial constant field.
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Figure 5.3: Numerical calculation of northward velocity for differentvalues of epsilon in

fast magnetic Rossby mode forα = 10, m = 3 with N = 50.

As indicated previously whenα is large the solutions are confined in a small gap at the

poles whereµ = cos θ tends to1, then a new scaled variable and its differential operators
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are defined by

µ = 1− γ1
α
µ̂,

d

dµ
= − α

γ1

d

dµ̂
,

d2

dµ2
=

α2

γ2
1

d2

dµ̂2
, 1− µ2 =

2γ1
α

µ̂+ ...

Substituting in the general differential equation (2.64) for the northward velocitỹuθ we

consider each term to find its leading order in the large parameterα. The differential

equation (2.64) has seven terms, here namedT1, T2,...andT7 respectively.We note from

the numerical solutions thatλ isO(α) for these trapped polar modes,

T1 = (1− µ2)∂
2ũθ

∂µ2 ∼ 2 α
γ1
µ̂∂2ũθ

∂µ̂2 ∼ O(α),

T2 =
2m2

[(λ2−m2α2)ǫ(1−µ2)−m2]
µ∂ũθ

∂µ
∼ O(1),

T3 = ǫ(λ2 −m2α2)ũθ ∼ O(α2),

T4 =
−m(λ+2mα2)
(λ2−m2α2)

ũθ ∼ O(1),

T5 = − ǫ(λ+2mα2)2µ2

(λ2−m2α2)
ũθ ∼ O(α2),

T6 =
−m2

1−µ2 ũθ ∼ O(α),

T7 = − 2mǫ(λ+2mα2)µ2

[(λ2−m2α2)ǫ(1−µ2)−m2]
ũθ ∼ O(α).

TermsT3 andT5 of orderO(α2) are dominants. These terms cancel out at leading order

to get a valid solution, so sinceµ2 = 1− 2γ1
α
µ̂+ ..., we obtain

ǫ(λ2 −m2α2) =
ǫ(λ + 2mα2)2

(λ2 −m2α2)
, (5.35)

which reduces toλ2−m2α2 = ±(λ+2mα2). Numerical results show that fast magnetic

Rossby waves are subalfvénic whenα is large, so we must choose the minus sign to get

λ = −1

2
±
√

1

4
+m(m− 2)α2. (5.36)
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Hereλ ∼ ±
√

m(m− 2)α is the leading order part, and leads to the cancellation of terms

O(α2): T3 andT5.

The differential equation for̃uθ have terms of orderO(α). The termsT2 andT4 areO(1)

only, and so can be neglected. We need to rethink the termsT3 andT5 to get theO(α)

part.

For eastward propagating waves let

λ = k +
√

m(m− 2)α.

Then

T1 ∼ 2 α
γ1
µ̂∂2ũθ

∂µ̂2 ∼ O(α),

T3 ∼ ǫ(−2mα2 + 2kα
√

m(m− 2) + k2α)ũθ ∼ O(α2),

T5 =∼ (2mǫα2 + 2kǫα
√

m(m− 2) + 2ǫα
√

m(m− 2)− 4mǫγ1αµ̂)ũθ ∼ O(α2),

T6 ∼ −m2α
2γ1µ̂

ũθ ∼ O(α),

T7 ∼ mα
γ1µ̂

ũθ ∼ O(α).

The termsO(α2) cancel as expected and onlyO(α) terms remain and the equation (2.64)

becomes

d2ũθ

dµ̂2
− 2mǫγ2

1 ũθ +
{(2k + 1)ǫ

√

m(m− 2)γ1
µ̂

+
m
2
− m2

4

µ̂2

}

ũθ = 0. (5.37)

As a result of this, we choose the value of the variableγ1 = 1/
√
8mǫ, and it gives the

Whittaker differential equation

d2ũθ

dµ̂2
+
{

− 1

4
+

κ

µ̂
+

1
4
−
(

m−1
4

)2

µ̂2

}

ũθ = 0, (5.38)
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where κ = (1 + 2k)
√

ǫ(m−2)
8

. In addition, the solutions are Whittaker functions

(Abramowitz and Stegun, 1964)

ũθ(µ̂) = e−
µ̂
2 µ̂

m
2

[

c1U(κ+
m

2
, m, µ̂) + c2Lκ−m

2

m−1(µ̂)
]

(5.39)

whereU is the confluent hyper-geometric function of second kind andL is a generalized

Laguerre polynomial. The solutionU is singular aŝµ tends to zero, so we choosec1 = 0.

So let

n = κ− m

2
= (1 + 2k)

√

ǫ(m− 2)

8
− m

2
.

Then we have a set of solutions trapped at the poles, there aredifferent modes depending

on the poloidal wave number:n.

ũθ(µ̂) = c2e
− µ̂

2 µ̂
m
2 Ln

m−1(µ̂). (5.40)

Consequently, the dispersion relation for magnetic Rossbywaves trapped at the poles for

m ≥ 3 is

λ = α
√

m(m− 2) +
(

n+
m

2

)

√

2

ǫ(m− 2)
− 1

2
, n = 0, 1, 2... (5.41)

For instance, letn = 0, L(0, m− 1, µ̂) = 1 andm = 3, the corresponding solution is

ũθ(µ) = c2(1− µ)
3

2 e−
√
6ǫα(1−µ). (5.42)

The solution tends to zero whenµ = 1 at the poles and also vanishes at the equator

(µ = 0) if α or ǫ are large, as the theory requires.
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Table 5.9: Comparison of eigenvaluesλ calculated with the formula (5.41) and the numerical

results form = 3 andN = 50.

α ǫ λcal λnum

10
0.1 23.5287 22.4811

100 17.0326 17.0414

100
0.1 179.4133 179.2968

100 172.9172 173.0246

1000
0.1 1739.3 1738.4

100 1731.8 1734.8

This solution is plotted in figure 5.4 forα = 10 and different values ofǫ.

The theory works in the range where the scale factor for polartrapping,1/(
√

(8mǫ)α)

is less than1. If the values ofα andǫ are large the polar trapping is very large, and the

fluid is strongly confined at the poles. This behaviour has been reproduced numerically in

chapter 4. Some eigenvaluesλ have been calculated with the formula (5.41) form = 3,

as shown in table 5.9, the results agree with the numerical method (n = 3, m = 3,

N = 50).
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Figure 5.4: Northward velocity for different values of epsilon in withα = 10 andm = 3,

calculated using the formula (5.42)

For fast magnetic Rossby waves travelling westwards at largeα, the dispersion relation

is

λ = −α
√

m(m− 2)− k−.

If the same procedure is applied to the equation (2.64), we obtain the Whittaker equation

with a small difference with respect to the eastward waves

d2ũθ

dµ̂2
− 2mǫγ2

1 ũθ +
{(2k− − 1)ǫ

√

m(m− 2)γ1
µ̂

+
m
2
− m2

4

µ̂2

}

, ũθ = 0. (5.43)

where the condition fork− is

k− = +
1

2
+
(

n +
m

2

)

√

2

ǫ(m− 2)
n = 0, 1, 2, ...

The solutions will be a set of functions depending on the azimuthal and poloidal wave
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numbers:m andk− respectively. Then, the expression forλ is given by

λ = −α
√

m(m− 2)−
(

n+
m

2

)

√

2

ǫ(m− 2)
− 1

2
, (5.44)

so the magnitude of the frequency of the fast magnetic Rossbywave is one greater than

the slow magnetic Rossby wave, although at largeα the form of the waves become

similar and also trapped at the poles.

From equation (5.44), we calculate the normalized frequency λ for α = 10, 100 and

1000, with ǫ = 0.1 and100. Accordingly, the results compare well with our numerical

results, as illustrated in table 5.10. We note that the difference inλ between eastward

and westward magnetic Rossby waves is1, see tables 5.9 and 5.10.

Table 5.10: Comparison of eigenvaluesλ calculated with the formula (5.44) and the

numerical results form = 3 andN = 50.

α ǫ λcal λnum

10
0.1 -24.5287 -23.2768

100 -18.0326 -18.0353

100
0.1 -180.4133 -180.2775

100 -173.9172 -174.0744

1000
0.1 -1739.3 -1739.4

100 -1732.8 -1735.8

The accuracy forλ improves whenα andǫ are large, except for the last row, where we

suppose that the polar trapping is large and the code is not able to compute the eigenvalues

when the truncation number isN = 50. It is possible that at highN the value could

improve but also we know the limitations of our numerical calculations.
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5.4 Asymptotic Theory for Stable Modes Trapped at the

Polem = 2

In the case of magnetic Rossby waves trapped at the poles form = 2, the formula (5.41)

cannot reproduce the frequencies, because of the factorα
√

m(m− 2). Anothernew

approximation is proposed here, motivated by the numericalresults,

λ = βα1/2 + κ, (5.45)

whereβ andκ are constants to be determined. The numerical results have shown that

these waves are confined at the poles whenα is large, therefore the same scalings used

for the previous sections are valid here

µ = 1− γ1
α
µ̂

d

dµ
= − α

γ1

d

dµ̂

d2

dµ2
=

α2

γ2
1

d2

dµ̂2
, 1− µ2 =

2γ1
α

µ̂+ ...

Substituting (5.45) and the scaling in the differential equation (2.64), every term of the

equation can be approximated as follows

T1 = (1− µ2)∂
2ũθ

∂µ2 ∼ 2 α
γ1
µ̂∂2ũθ

∂µ̂2 = O(α),

T2 =
2m2

[(λ2−m2α2)ǫ(1−µ2)−m2]
µ∂ũθ

∂µ
∼ 1

γ1ǫµ̂
dũθ

dµ̂
= O(1),

T3 = ǫ(λ2 −m2α2)ũθ ∼ (−4ǫα2 + β2ǫα + 2βκǫα1/2)ũθ = O(α2),

T4 =
−m(λ+2mα2)
(λ2−m2α2)

ũθ ∼ 2ũθ = O(1),

T5 = − ǫ(λ+2mα2)2µ2

(λ2−m2α2)
ũθ ∼ [4ǫα2 + β2ǫα− 8γ1ǫαµ̂+ 2(κ+ 1)βǫα1/2]ũθ = O(α2),

T6 =
−m2

1−µ2 ũθ ∼ −2α
γ1µ̂

ũθ = O(α),

T7 = − 2mǫ(λ+2mα2)µ2

[(λ2−m2α2)ǫ(1−µ2)−m2]
ũθ ∼ 2α

γ1µ̂
ũθ = O(α).
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We neglect terms of orderO(1): T2 andT4. The termsT6 andT7 are cancelled. Then,

the equation (2.64) becomes

d2ũθ

dµ̂2
+
{β2ǫγ1

µ̂
− 4γ2

1ǫ+
(2κ+ 1)γ1βǫ

µ̂α1/2

}

ũθ = 0. (5.46)

In order to eliminate the last term, we setκ = −1/2, and make the convenient choice

γ1 = 1/4ǫ1/2. Now the differential equation is the Whittaker equation (Abramowitz and

Stegun, 1964), where

β2 =
4(n+ 1)

ǫ1/2
.

So
d2ũθ

dµ̂2
+
{

− 1

4
+

(n+ 1)

µ̂

}

ũθ = 0. (5.47)

There is a set of solutions corresponding to

ũθ = µ̂e−µ̂/2L1
n(µ̂). (5.48)

whereL1
n(µ̂) is the Generalized Laguerre function. For example, ifn = 0 thenL1

0(µ̂) =

1, therefore the lowest mode solution is

ũθ(µ) = 4ǫ1/2α(1− µ)e−2ǫ1/2α(1−µ).

This solution is confined at the pole because of the factore−2ǫ1/2α(1−µ), which is

maximum at the poles and at the equator tends to zero.

In general, the dispersion relation for the polar trapped magnetic Rossby waves form = 2

is

λn = ±2[(n + 1)α]1/2

ǫ1/4
− 1

2
. (5.49)

The frequency of the magnetic Rossby waves increases withα and decreases withǫ, as

shown in the following tables. The results of the formula (5.49) are in table 5.11 and

the numerical results for a truncation number ofN = 50 are reported in table 5.12.

Comparing these values is clear that there is a good agreement between the asymptotic

theory and the numerics, although the value ofλ for α = 10 andǫ = 0.01 in the table
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5.11 is not right, possibly because the mode here is not sufficiently trapped.

Table 5.11:Eigenvalues calculated with the formula (5.49).

α 10 100 1000

ǫ = 0.01 19.5000 62.7456 199.5000

ǫ = 0.1 10.7468 35.0656 111.9683

ǫ = 1 5.8246 19.5000 62.7456

ǫ = 10 3.0566 10.7468 35.0656

ǫ = 100 1.5000 5.8246 19.5000

The asymptotic theory provides reasonable results when thenumerical method is limited

because the polar trapping of the functions.

Table 5.12:Numerical results for the lowest moden = 2, m = 2 andN = 50.

α 10 100 1000

ǫ = 0.01 15.48 62.705 199.5

ǫ = 0.1 10.677 35.073 111.970

ǫ = 1 5.8606 19.508 ****

ǫ = 10 3.098 10.758 ****

ǫ = 100 1.5634 **** ****

5.4.1 Solutions near the poles

In order to find solutions near the poles the dispersion relation for magnetic Rossby

modes can be approximated using the expressionλ = βα1/2 + κ , for m = 2 and a
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new scaling

µ = 1− γ2
α2

µ̃.

Therefore

µ2 = 1− 2γ2
α2

µ̃+
γ2
2

α4
µ̃2 and 1− µ2 =

2γ2
α2

µ̃.

Then, the differential operators can be expressed as:d
dµ

= −α2

γ2
d
dµ̃

and d2

dµ2 = α4

γ2
2

d2

dµ̃2 . Also

the factor(λ2−m2α2)ǫ(1−µ2)−m2 → −8ǫγ2

[

µ̃+ 1
2ǫγ2

]

. Substituting this scaling into

equation (2.64), the terms will reduce to

T1 = (1− µ2)∂
2ũθ

∂µ2 ∼ 2α2

γ2
µ̃∂2ũθ

∂µ̃2 = O(α2),

T2 =
2m2

[(λ2−α2m2)ǫ(1−µ2)−m2]
µ∂ũθ

∂µ
∼ α2

ǫγ2
2

1
[

µ̃+ 1

2ǫγ2

]

dũθ

dµ̃
= O(α2),

T3ǫ(λ
2 − α2m2)ũθ ∼ −4ǫα2ũθ = O(α2),

T4 =
−m(λ+2mα2)
(λ2−α2m2)

ũθ ∼ 2ũθ = O(1),

T5 = − ǫ(λ+2mα2)2µ2

(λ2−α2m2)
ũθ ∼ 4ǫα2ũθ = O(α2),

T6 =
−m2

1−µ2 ũθ ∼ −2α2

γ2µ̃
ũθ = O(α2),

T7 =
−2mǫ(λ+2mα2)µ2

[(λ2−α2m2)ǫ(1−µ2)−m2]
ũθ ∼ 2α2

γ2

[

µ̃+ 1

2ǫγ2

] ũθ = O(α2).

When the terms balance atO(α2), the equation is

µ̃
d2ũθ

dµ̃2
+

1

2ǫγ2

1
[

µ̃+ 1
2ǫγ2

]

dũθ

dµ̃
− 1

µ̃
ũθ +

1
[

µ̃+ 1
2ǫγ2

] ũθ = 0. (5.50)

This equation has a very simple general solution. We let2ǫγ2 = 1, i.e, chooseγ2 = 1/2ǫ.

Therefore

µ̃
d2ũθ

dµ̃2
+

1

(1 + µ̃)

dũθ

dµ̃
− 1

µ̃
ũθ +

1

(1 + µ̃)
ũθ = 0. (5.51)
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One valid solution for the previous equation isũθ = µ̃, then near the poles, the velocity

can be expressed by

ũθ = 2ǫα2(1− µ). (5.52)

whenµ → 1 the velocity tends to zero.

5.5 Asymptotic Theory for the Anomalous Mode in the

Small α Regime

In the numerical results there is also a slow anomalous mode travelling to the west, that

appears in the presence of the magnetic field. This mode collides with the first magnetic

Rossby mode and the wave becomes unstable. This phenomenon occurs only form = 1

and for the magnetic Rossby modes. This mode has been found numerically and the

normalized frequency is summarized in table 4.14. We can note that the wave is very slow

in the smallα regime and the frequencies are very small. Therefore, in theequation (2.64)

ǫ isO(1), α2 is small,m = 1 andλ = λ̂ǫα4. The factor[(λ2 −m2α2)ǫ(1− µ2)−m2] ∼
−[1 + α2ǫ(1− µ2)], and using geometric series, and the fact thatλ2 ≪ α2 the following

fraction reduces to

1

[(λ2 −m2α2)ǫ(1− µ2)−m2]
∼ −[1− α2ǫ(1− µ2)]

With these approximations the equation (2.64) for the northward velocity becomes

(1− µ2)
d2ũθ

dµ2
− 2[1− α2ǫ(1− µ2)]µ

dũθ

dµ
+

{ λ

α2
+ 2 + 4ǫα2µ2 − 1

(1− µ2)
− ǫα2 + 4ǫα2µ2[1− α2ǫ(1 − µ2)]

}

ũθ = 0. (5.53)
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Takingλ = λ̂ǫα4, the equation (5.53) can be written as

(1− µ2)
d2ũθ

dµ2
− 2[1− α2ǫ(1− µ2)]µ

dũθ

dµ
+

{

λ̂ǫα2 + 2 + 8ǫα2µ2 − 1

(1− µ2)
− ǫα2 − 4ǫ2α4µ2(1− µ2)

}

ũθ = 0. (5.54)

Rearranging the terms of the differential equation, we have

(1− µ2)
d2ũθ

dµ2
− 2µ

dũθ

dµ
+ 2ũθ −

ũθ

(1− µ2)

+ ǫα2
{

2µ(1− µ2)
∂ũθ

∂µ
+
[

λ̂+ 8µ2 − 1− 4ǫα2µ2(1− µ2)
]

ũθ

}

= 0. (5.55)

We propose a sinusoidal solution for this differential equation

ũθ = (1− µ2)1/2 + ǫα2y. (5.56)

Substituting the solution into the equation (5.55) and taking the solutions of orderO(ǫα2)

ǫα2
{

(1− µ2)
d2y

dµ2
− 2µ

dy

dµ
− y

(1− µ2)
+ 2y

}

+ ǫα2
{

2µ(1− µ2)
dũθ

dµ
+
[

λ̂+ 8µ2 − 1
]

ũθ

}

= 0. (5.57)

We takeũθ = (1 − µ2)1/2 and dũθ

dµ
= −µ

(1−µ2)1/2
to maintain the orderO(ǫα2) of the

equation.

(1 − µ2)
d2y

dµ2
− 2µ

dy

dµ
− y

(1− µ2)
+ 2y = −

[

λ̂ + 6µ2 − 1
]

(1 − µ2)1/2. (5.58)

We try a power ofsin θ as solution for the differential equation

y = A(1− µ2)3/2,
dy

dµ
= −3Aµ(1− µ2)1/2,

d2y

dµ2
= 3A

(2µ2 − 1)

(1− µ2)1/2
.

Substituting this expression into equation (5.58), we find an algebraic equation for powers

of µ

−A(1 − µ2)2 + (9A+ 6)µ2(1− µ2) + (λ̂− A− 1)(1− µ2) = 0. (5.59)



Chapter 5. Magnetohydrodynamics: Analytical Approach 147

We obtainA = −3/5, λ̂ = −1/5. Hence, the frequency of the anomalous mode will be

λ = −1

5
ǫα4. (5.60)

As has been shown, the wave has a magnetic origin and is influenced by the rotation.

Undeniably, the formula (5.60) agrees with the results of table 4.14, and also the solution

for the velocity agrees with figure 4.32(a) and (b). Finally,the solution for the Northward

velocity is

ũθ = (1− µ2)1/2 − 3

5
ǫα2(1− µ2)3/2. (5.61)

This demonstrates that the wave form is mostly sinusoidal. We notice that for smallα,

the wave form will not be affected by variations in the magnetic field or the rotation,

because the second term will be small.

5.6 Kelvin Waves

In this section, we analyse the effect of the magnetic field onthe Kelvin waves. We obtain

an analytical formulation for the dispersion relation and also the eigenfunctions. For the

non-magnetic case, Longuet-Higgins has studied the Kelvinwaves. He found just one

mode that travels to the east that corresponds to this kind ofoscillation. He established

the features of this mode as follows:

• For small parameterǫ, the Kelvin mode correspond to the first gravity wave

travelling eastward (n−m = 0), with dispersion relation

λ =

√

n(n+ 1)

ǫ
.

• When ǫ is large, the waves are equatorially trapped and the dispersion relation

changes to

λ =
m√
ǫ
.
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• The northward velocitỹuθ is small compared with the other quantities for largeǫ.

When a toroidal magnetic field is introduced in the system, the waves become modified

by the magnetic field. Then, these wave becomes trapped at theequator for largeα or ǫ,

as shown in the numerical solutions for the eigenfunctions.From the numerical results,

we note that increasingǫ orα the northward velocity goes to zero faster, as a property of

this magneto-Kelvin mode. The fluid reduces the movement to an azimuthal flow. The

original set of equations, wheñuθ = 0 (Holton and Lindzen, 1968), is reduced to

(λ+ 2mα2)µũφ + λ(1− µ2)
∂η̃

∂µ
= 0, (5.62a)

(λ2 −m2α2)ũφ − λmη̃ = 0, (5.62b)

λǫ(1 − µ2)η̃ −mũφ = 0. (5.62c)

Taking the derivative of equation (5.62b) and rearranging gives

λm
dη̃

dµ
= (λ2 −m2α2)

dũφ

dµ
. (5.63)

Substitutingλm∂η̃/∂µ into equation (5.62a), we obtain a first order differential equation:

(1− µ2)
dũφ

dµ
+

m(λ+ 2mα2)

(λ2 −m2α2)
µũφ = 0, (5.64)

The analytic solution of this differential equation, can becalculated by direct integration,

then, the expression will be

ũφ = C1(1− µ2)q/2, (5.65)

whereC1 is a constant associated with the normalization and the power q is related to the

frequency, and it is expected to be positive in order to obtain finite solutions

q =
m(λ+ 2mα2)

(λ2 −m2α2)
. (5.66)

The exponential function forx near zero is

ex = 1 + x+
x2

2!
+

x3

3!
+ .....
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Therefore, at the equatorµ = cos θ tends to zero, the polynomial function1− µ2 + ... ∼
e−µ2

. As a consequence of this, the solution (5.65) can be expressed as

ũφ = C1e
−qµ2/2. (5.67)

Then a formula for̃η can be found as

η̃ = C1
(λ2 −m2α2)

λm
e−qµ2/2. (5.68)

Substituting these expressions forη̃ andũφ into the equation (5.62c), and taking the limit,

when1− µ2 ∼ 1 for equatorially trapped waves, a dispersion relation is found

λ2 −m2α2 =
m2

ǫ
. (5.69)

Then, we may define a dispersion relation for Magneto-Kelvinwaves

λ = ±m

√

1

ǫ
+ α2. (5.70)

As shown in the last equation, ifα = 0 the dispersion relation will coincide with Longuet-

Higgins formula for Kelvin waves. Substitutingλ into the expression for the powerq, we

will have

q = ǫ

(

2α2 ±
√

1

ǫ
+ α2

)

.

Longuet-Higgins neglected the negative answer forλ, but in this case we can consider

the negative answer whenq is greater than zero, which is possible for values ofα > 0.5

for large epsilon. For small values ofǫ this wave exists forα > 1/
√
2ǫ1/4, approximately.

Then, forα or ǫ very large,q will be very large and the function will be more trapped.

Using this asymptotic theory we can predict the eigenvaluesfor the Magneto-Kelvin

waves, from equation (5.70). The results are summarized in table 5.13. The results are

very accurate compared with our numerical results reportedin table 4.15.
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Table 5.13: Eigenvalues calculated with the formula (5.69) from the asymptotic theory for

largeα, the values with the star* were calculated with the formula of Longuet-Higgins for

gravity waves for smallǫ = 0.01 andǫ = 0.1.

α 10−3 10−2 10−1 1 101 102 103

ǫ = 0.01 14.1421* 14.1421* 14.1421* 14.1421* 14.1421 100.49876 1000.0500

ǫ = 0.1 4.4721* 4.4721* 4.4721* 4.4721* 10.4881 100.0500 1000.0050

ǫ = 1 1.0000 1.0000 1.0050 1.4142 10.0499 100.0050 1000.0005

ǫ = 10 0.3162 0.3164 0.3317 1.0488 10.0050 100.0005 1000.0000

ǫ = 100 0.1000 0.1005 0.1414 1.0050 10.0005 100.0000 1000.0000

The westward Kelvin mode is produced by the magnetic field. The eigenfunctions for the

northward velocity also tend to zero whenα or ǫ grow. In table 5.14 the values ofλ have

been computed with the formula (5.70). The spaces with the dashed line were discarded

because they correspond to solutions forq negative. The starred values are associated to

high q > 1900 and the numerical solution could no longer computed with thecode due

to the high confinement at the equator, as expected.

Table 5.14: Propagating westward Kelvin wave. Eigenvaluesλ calculated with the formula

(5.70) form = 1.

α 1 101 102

ǫ = 0.01 - - - -14.1421 -100.4988

ǫ = 0.1 - - - -10.4881 -100.0500*

ǫ = 1 -1.4142 -10.0499 -100.0050*

ǫ = 10 -1.0488 -10.0050* -100.0005*

ǫ = 100 -1.0050 -10.0005* -100.0000*
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5.7 Summary

In this chapter we found asymptotic expressions for the different kinds of waves when

ǫα2 ≫ 1. As discussed MIG waves solutions satisfy the parabolic cylinder differential

equation with solutions

ũθ = e−
µ̂2

4 Hν(
µ̂√
2
),

whereHν are the Hermite polynomials. These functions represent equatorially trapped

waves, with frequencies

λ = ±mα±(2ν+1)2/3
(

α

2mǫ

)1/3

± (2m)1/3

3(2ν + 1)2/3ǫ2/3α1/3

[

1−3(2ν + 1)2

4m2

]

+
(2ν + 1)2/3

3(2mǫ)1/3α2/3
.

With regard to the Kelvin mode, it takes the form of an exponential function

uφ = e−
q
2
µ2

,

where q is a positive number, for waves concentrated at the equator with relation

dispersion

λ = ±m

√

1

ǫ
+ α2.

There is a possibility that a Kelvin mode propagating westward can exist for certain

values ofǫ andα.

Similarly fast magnetic Rossby waves satisfy the paraboliccylinder differential equation

as MIG waves but when the parameterα has a moderate value where these waves are

trapped at the equator, with frequencies

λ = −mα− m

2ǫα(2ν + 1)2
.

In the case whenα is large andm = 2, magnetic Rossby waves (fast and slow)

eigenfunctions correspond to the Whittaker functions

ũθ = e−
µ̂
2 µ̂L1

n′(µ̂),
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whereLm−1
n′ are the Generalized Laguerre polynomials.

Although if α is large andm ≥ 3, the solutions for magnetic Rossby waves (fast and

slow) are the Whittaker functions

ũθ = e−
µ̂
2 µ̂m/2Lm−1

n′ (µ̂).

In addition, an asymptotic theory was developed in the case of smallα for the anomalous

slow magnetic Rossby wave traveling to the west with frequency λ = −0.2ǫα4, with

sinusoidal solutions equal to

ũθ = (1− µ2)1/2 − 3

5
ǫα2(1− µ2)3/2.

A mathematical description for unstable magnetic Rossby waves (whenm = 1) is

provided in the next chapter.
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Chapter 6

Instabilities

The most interesting aspect of the magnetic Rossby waves is the instability that occurs

whenm = 1. Unlike MIG and Kelvin waves, these magnetic Rossby modes become

unstable due to the toroidal magnetic field intensity. In this chapter, the main numerical

results for instability of magnetic Rossby waves are presented here, in section 6.1. Then,

we propose a theory for the behaviour of unstable modes when the magnetic parameter,

α, is large. The theory explains the limit case for the eigenvalues and finds analytic

solutions for the eigenfunctions and the dispersion relation.

6.1 Numerical Results for Instabilities

Magnetic Rossby waves evolve into growing modes in the presence of the magnetic field.

Forα < 0.5, fast and slow frequencies are real and have some propertieswhich have been

mentioned in previous chapters,these include that fast magnetic Rossby waves undergo

equatorial trapping. Here the fast magnetic Rossby mode is in the superalfvénicregime

|λ| > mα.

For α > 0.5, each fast magnetic Rossby frequency becomes subalfvénic, coalesces

with its counterpart slow Rossby mode and a complex mode branches off. Figure 6.1



154 Chapter 6. Instabilities

illustrates this behaviour for the fast magnetic Rossby moden = 2. Whenα = 0.1 the

normalized frequency is real and the wave is trapped at the equator. For higher values of

α, the mode is complex and it is polar trapped, forǫ = 100.

This instability is driven by the magnetic field, but it requiresα > 0.5 andm = 1. In
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Figure 6.1: Real part of the northward velocity and azimuthal velocity for magnetic Rossby

mode withm = 1, ǫ = 100 with N = 50. The blue line corresponds toα = 0.1 when

the eigenvalue and eigenfunction are real and trapped at theequator for these values of the

parametersα andǫ. In green the values forα = 1 and in red the values forα = 10, where

the eigenfunctions are trapped at the poles.

figure 6.2(a), the normalized frequencyλ of these modes form = 1, m = 2 andm = 3 is

plotted againstα. Whenm = 1 (in blue) the fast magnetic Rossby mode collides with an

anomalous magnetic Rossby wave travelling westward and an unstable mode branches

off, represented by the dashed line in blue. Ifm ≥ 2 the frequencies remain always real

as shown in the pink (m = 2) and the red (m = 3) curves. In all these cases the upper

branches are slow magnetic Rossby waves and the lower are fast magnetic Rossby waves.

Also, instability has been found by Malkus (1967), for a sphere of rotating fluid immersed

in a toroidal field:Bφ = B0 sin θ. In this analysis in cylindrical coordinates(r, φ, z), the

instability occurs whenm = 1 and for a minimum value of the magnetic field intensity

equivalent to our criteriaα ≥ 0.5.
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Figure 6.2: Dispersion relation for Magnetic Rossby Modesλ againstα. Lower branches

are fast magnetic Rossby waves and upper branches are slow magnetic Rossby waves. (a)

For the blue curve: the lower branch is a fast magnetic Rossbywave withm = 1 which

collides with an anomalous wave traveling westward and a complex eigenvalue branches off,

the dashed line is the real part of the complex eigenvalue. The other lines represent fast

magnetic Rossby waves and slow magnetic Rossby waves form = 2 in pink andm = 3

in red, whenǫ = 1. (b) Behaviour of unstable modes for different values of theparameter

ǫ = 1, 10, 100, 1000 whenm = 1. The dashed lines are related to the real part of the complex

eigenvalue.

The instability sets in nearα = 0.5 whenǫ is very large but onsets at larger values ofα

whenǫ is small, as shown in figure 6.2(b). The numerical calculations indicate that in the

small ǫ regime the first fast magnetic Rossby mode (n = 1) becomes unstable slightly

afterα ∼ ǫ−1/4; in the case of the second fast magnetic Rossby mode (n = 2) instability

starts nearα ∼
√
2ǫ−1/2 see figure 6.3.

This criterion has been found by Malkus (1967), and in the limit ǫ → ∞ his criterion

reduces to ours. The limitǫ → ∞ corresponds to the effect of gravity dropping out from

our problem, which is equivalent to the buoyancy frequency being small compared to the
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rotation frequency.

Sharif and Jones (2005) have found instabilities form = 1, considering Ohmic diffusion

in a homogeneous fluid for a spherical shell which implies a very large buoyancy

frequency whereǫ → 0. They found instability when magnetic diffusion was added,but

no instability in the absence of diffusion. In this case the magnetic field had a slightly

more complicated basic state, but their results are consistent with ours, because with no

magnetic diffusion and smallǫ our criticalα for instability goes to infinity.
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Figure 6.3: Values ofα and ǫ for instability whenm = 1 for the first and second fast

magnetic Rossby mode. The modes are unstable for the values of the parameters above the

lines.

Unstable and stable magnetic Rossby waves are polar trappedwhenα increases. This

polar trapping has been also described by Cally (2003) in thecontext of a 3-D Boussinesq

thin layer approximation for instabilities and it is called“ Polar Kink Instability”. As

shown in figure 6.4 the eigenfunctions forũθ become polar trapped for large values ofα,

waves are more localised whenǫ or α increase.

These numerical results are consistent with those observedin earlier studies. Tayler

(1973) demonstrated that instability can occur in a non rotating star with a toroidal field



Chapter 6. Instabilities 157

0 50 100 150
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

colatitude (degrees)

ℜ(
ũ
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Figure 6.4: Real and Imaginary part of the northward velocity for Magnetic Rossby mode

with m = 1 with N = 50. The blue line corresponds toα = 0.96 andǫ = 1, the green curve

is related toα = 10 andǫ = 1, in red the values forα = 0.638 andǫ = 10 andα = 10 with

ǫ = 10 in cyan.

configuration. He states that the occurrence of the instability depends on the topology

of the field and not on its intensity and derives its energy from horizontal interchanges.

Later works by Tayler (1980) and Pitts and Tayler (1985) showed that current driven

instabilities for a toroidal field can become unstable to non-axisymmetric disturbances,

both also in cylindrical and spherical coordinates, see Spruit (1999). The current provides

the energy for the instability, and the magnetic field is an energy source, then a strong

magnetic field is required to set the instability. In currentdriven instabilities the role

of the rotation rate is to mediate the rate at which energy canbe extracted from the

mean field. There are other classes of instabilities that emerge from the differential

rotation and current, see Gilman and Fox (1997), Dikpati et al. (2003), Cally (2003),

Cally et al. (2008), Hollerbach and Cally (2009). TheJoint instabilitiesdescribed there

occur for relatively weak fields that may be present in stablelayers of planets and stars,

in differential rotating layers. Without differential rotation or magnetic field the system

is linearly stable. In these cases the toroidal magnetic field extracts energy from the

differential rotation, although some energy can be extracted from the current.
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6.2 Asymptotic Theory for Unstable Modes Trapped at

the Pole forα >> 10

Polar trapping of unstable modes can be understood via asymptotic analysis. We assume

m = 1, to analyse the instabilities as there is no instability form 6= 1.

In order to identify the scaling for the problem, the northward velocity plots have been

observed to determine how the confinement in the poles changes with the magnetic

parameterα.

At the north poleµ = cos θ tends to1, then a new scaled variablêµ and its differential

operators are defined by

µ = 1− γ1
α
µ̂,

d

dµ
= − α

γ1

d

dµ̂
,

d2

dµ2
=

α2

γ2
1

d2

dµ̂2
.

Then from the numerical calculations for the eigenvalues intables 4.7, 4.8, 4.10, 4.11

and 4.14, we deduce thatλ = −1/2 + i(α − k), wherek andγ1 must be calculated and

are orderO(1). The factorsλ2 and(λ2 − α2) will be reduced to

λ2 ∼ 1

4
− α2 − 2αk − iα +O(1), λ2 − α2 ∼ −2α2.

Substituting into the general differential equation (2.64) for the northward velocitỹuθ we

reduce each term, which gives
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T1 = (1− µ2)∂
2ũθ

∂µ2 ∼ 2µ̂ α
γ1

∂2ũθ

∂µ̂2 = O(α),

T2 =
2m2

[(λ2−α2m2)ǫ(1−µ2)−m2]
µ∂ũθ

∂µ
∼
(

1
2γ1ǫµ̂

+O(α−1)
)

dũθ

dµ̂
= O(1),

T3 = ǫ(λ2 − α2m2)ũθ ∼ (−2ǫα2 + 2kǫα− iǫα +O(1))ũθ = O(α2),

T4 =
−m(λ+2mα2)
(λ2−α2m2)

ũθ ∼ −m2ũθ = O(1),

T5 = − ǫ(λ+2mα2)2µ2

(λ2−α2m2)
ũθ ∼ (2ǫα2 + 2kǫα + iǫα− 4γ1ǫαµ̂+O(1))ũθ = O(α2),

T6 =
−m2

1−µ2 ũθ ∼ −α
2γ1µ̂

ũθ = O(α),

T7 =
2mǫ(λ+2mα2)µ2

[(λ2−α2m2)ǫ(1−µ2)−m2]
ũθ ∼ ( α

γ1µ̂
+O(1))ũθ = O(α).

Note that the sum of the termsT3+T5 have orderα, therefore the termsT1, T3, T5, T6 and

T7 are retained. Then, the equation (2.64) reduces to a second order differential equation

d2ũθ

dµ̂2
− 2γ2

1ǫũθ +

{

2kǫγ1
µ̂

+
1

4µ̂2

}

ũθ = 0. (6.1)

Although the theory is directed to latitudes correspondingto the northern hemisphere, we

know that the solutions are symmetric for both hemispheres and it is expected that the

solutions for equation 6.1 vanish at the equator which allowthat northern and southern

solutions join across the equator.In addition, we choose the value of the variableγ1 =

1/
√
8ǫ.

The differential equation has the form of the Whittaker differential equation

d2ũθ

dµ̂2
− 1

4
ũθ +

{

k
√
ǫ√

2µ̂
+

1

4µ̂2

}

ũθ = 0. (6.2)



160 Chapter 6. Instabilities

The proposed solutions arẽuθ = W (µ̂)µ̂1/2e−
µ̂
2 . Substituting into (6.2), the differential

equation becomes

µ̂
d2W

dµ2
+ (1− µ̂2)

dW

dµ̂
+

(

k

√

ǫ

2
− 1

2

)

W = 0. (6.3)

Takingk
√

ǫ
2
= n′+ 1

2
, wheren′ is a natural number to have finite solutions. The resulting

differential equation is the standard form of the Laguerre equation

µ̂
d2W

dµ2
+ (1− µ̂)

dW

dµ̂
+ n′W = 0, (6.4)

and the solutions are the Laguerre polynomialsLn′. The solutions are a set of functions

depending of the poloidal wave numbern′

ũθ(µ̂) = µ̂
1

2 e−
µ̂
2Ln′. (6.5)

Forn′ = 0, L0 = 1 . Therefore, the corresponding solution is

ũθ(µ̂) = e−
µ̂
2 µ̂

1

2 . (6.6)

As expected form the numerical results, the expression for the frequency is increasing

with α and decreasing withǫ, as follows

λ = −1/2 + i(α− 1/
√
2ǫ). (6.7)

The theory works in the range where the scale factor for polartrapping is less than 1

γ1
α

=
1√
8ǫα

≪ 1.

From equation (6.7), we calculate the normalized frequencyfor α = 10, 100 and1000,

for different values ofǫ. Accordingly, the results are very accurate compared with our

numerical results, as shown in tables 6.1-6.2 and 6.3-6.4.The numerical calculations

show that the correspondence between the solutions isn′ = n−2, wheren is the poloidal

wave number used for the solutions in chapter 4.
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Table 6.1: Imaginary part of the eigenvalues calculated in the asymptotic theory with the

formula (6.7). In this casen′ = 0.

α 10 100 1000

ǫ = 0.01 **** 92.9289 992.9289

ǫ = 0.1 7.7639 97.7639 997.7639

ǫ = 1 9.2929 99.2929 999.2929

ǫ = 10 9.7764 99.7764 999.7764

ǫ = 100 9.9293 99.9293 999.9293

Table 6.2: Imaginary part of the eigenvalues, calculated numericallywith the method

described in section 2.4, forn = 2, N = 50 andm = 1.

α 10 100 1000

ǫ = 0.01 **** 92.7 992.9

ǫ = 0.1 7.5 97.7 997.8

ǫ = 1 9.3 99.3 999.1

ǫ = 10 9.8 99.8 999.3

ǫ = 100 9.9 99.9 999.3

Tables 6.3 and 6.4 illustrate that there is a difference between the values ofλ whenǫ is

small because this asymptotic formula is for waves confined at the poles. The numerical

values forα andǫ large are not accurate, due to the fact that the numerical method is not

able to compute them in this regime with accuracy.
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Table 6.3: Imaginary part of the eigenvalues calculated in the asymptotic theory. In this case

n′ = 1.

α 10 100 1000

ǫ = 0.01 **** 78.7868 978.7868

ǫ = 0.1 **** 93.2918 993.2918

ǫ = 1 7.8787 97.8787 997.8787

ǫ = 10 9.3292 99.3292 999.3292

ǫ = 100 9.7879 99.7879 999.7879

Table 6.4: Imaginary part of the eigenvalues, calculated numericallywith the method

described in section 2.4, forn = 3, N = 50 andm = 1.

α 10 100 1000

ǫ = 0.01 **** 62.6 992.9

ǫ = 0.1 **** 93.2 997.8

ǫ = 1 7.7 97.9 997.0

ǫ = 10 9.3 99.3 997.5

ǫ = 100 9.77 99.7 997.6

6.2.1 Solutions near the poles

Another possible scaling for approximating solutions withhigh polar trapping is

described in this section.This scaling can be more useful for characterising the functions

at the pole due to the fact that the term(1 − µ2) tends to zero near the pole and the

considerations of the last section are not valid in this case.
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In the previous section 6.2, the factor related to the latitude is

1− µ = 1− cos θ = 2 sin2
(θ

2

)

=
γ1
α
µ̂ =

1

α
√
8ǫ
µ̂.

If the solutions are near the north pole,θ is small, then,sin θ/2 ∼ θ/2, so

θ2

2
=

µ̂

α
√
8ǫ

→ µ̂ =
√
2ǫαθ2.

For example, whenn′ = 0, the solution is

ũθ = Aθe−
√

ǫ
2
αθ2 , (6.8)

whereA is a normalization constant. As a consequence of thisũθ is linearly proportional

to θ near the pole. Calculating the first derivative

dũθ

dθ
= [1−

√
2ǫαθ2]Ae−

√
ǫ
2
αθ2 , (6.9)

When the derivative is zero, the value of the function is maximum:

dũθ

dθ
= 0 when 1−

√
2ǫαθ2 = 0, for the n = 0 mode.

The maximum occurs atθ =
√

1/(α
√
2ǫ), whenθ is in radians.

The only unsatisfactory feature of this analysis is that to eliminate the second termT2 we

assume(λ2 − m2α2)ǫ(1 − µ2) ≫ m2, and that(λ2 − m2α2)ǫ(1 − µ2) is O(α). When

(1 − µ2) is very small, close to the pole, this will not be true. To investigate this region,

we need a second scaling:

µ = 1− γ2
α2

µ̃.

Then,µ2 = 1− 2γ2
α2 µ̃+

γ2
2

α4 µ̃
2. Therefore

1− µ2 =
2γ2
α2

µ̃.

The differential operators becomed
dµ

= −α2

γ2
d
dµ̃

and d2

dµ2 = α4

γ2
2

d2

dµ̃2 . Also the factor(λ2 −
m2α2)ǫ(1 − µ2) − 1 → −1 − 4γ2ǫµ̃. Substituting this scaling into equation (2.64), the

terms reduce to
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T1 = (1− µ2)∂
2ũθ

∂µ2 ∼ 2α2

γ2
µ̃∂2ũθ

∂µ̃2 = O(α2),

T2 =
2

[(λ2−α2m2)ǫ(1−µ2)−m2]
µ∂ũθ

∂µ
∼ 2α2

γ2(1+4ǫγ2µ̃)
dũθ

dµ̃
= O(α2),

T3 = ǫ(λ2 − α2m2)ũθ ∼ −2ǫα2ũθ = O(α2),

T4 =
−m(λ+2mα2)
(λ2−α2m2)

ũθ ∼
[

2 + i
2α

− (2k+1)
4α2

]

ũθ = O(1),

T5 = − ǫ(λ+2mα2)2µ2

(λ2−α2m2)
ũθ ∼ 2ǫα2ũθ = O(α2),

T6 =
−1

1−µ2 ũθ ∼ −α2

2γ2µ̃
ũθ = O(α2),

T7 =
−2mǫ(λ+2mα2)µ2

[(λ2−α2m2)ǫ(1−µ2)−m2]
ũθ ∼ 4ǫα2

1+4ǫγ2µ̃
ũθ = O(α2).

When the terms balance atO(α2), the equation is

µ̃
d2ũθ

dµ̃2
+

1

(1 + 4γ2ǫµ̃)

dũθ

dµ̃
− 1

4µ̃
ũθ +

2ǫγ2
(1 + 4ǫγ2µ̃)

ũθ = 0. (6.10)

This equation has a very simple general solution. We let4ǫγ2 = 1, i.e, chooseγ2 = 1/4ǫ.

Then

µ̃
d2ũθ

dµ̃2
+

1

(1 + µ̃)

dũθ

dµ̃
− 1

4µ̃
ũθ +

1

2(1 + µ̃)
ũθ = 0. (6.11)

The general solution is

ũθ = C1µ̃
1/2 + C2

( µ̃lnµ̃− 1√
µ̃

)

, (6.12)

which can be verified by direct substitution. Now, becauseũθ → 0 asµ̃ → 0, C2 = 0.

This matches with the Laguerre polynomial solutions, e.g. whenn′ = 0, ũθ ∼ µ̃1/2e−µ̃/2,

ande−µ̃/2 → 1, asµ̃ → 0. So asµ̃ → ∞ it matches tõuθ asµ̂ → 0. This means that we

have a leading order solution valid for allµ near the pole.

For this work, the third and fifth terms of the equation (2.64)have to cancel at leading
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order in the previous scaling whereµ now set to be 1, this requires

(λ2 − α2m2)2 − (λ+ 2mα2)2 = 0.

For this quadratic equation, two solutions exist

(λ2 − α2m2) = ±(λ + 2mα2). (6.13)

If we take the negative sign, we find complex eigenvalues

λ = −1

2
±
√

1 + 4α2m(m− 2)

2
. (6.14)

If m = 1 instability can be possible, as reflected in the numerical results, withm = 2

or bigger,λ is purely real, so a growing mode of this type cannot occur. When α is

largeλ = −1
2
± αi, as expected. Note that taking the plus sign in equation (6.13),

λ is again real. The formula (6.14) seems to be consistent withother research which

found a similar result for the frequencies of the solutions in 3D Boussinesq thin layer

approximation where “polar kink” instabilities are mentioned (Cally, 2003).

6.3 Transport of Angular Momentum

There is a special interest to study angular momentum transport in the tachocline (Zahn

et al., 1996, Hughes et al., 2007, Dikpati et al., 2003). We consider here how do the

unstable waves could change the angular momentum in the system and propose an

example.

An equation for the conservation of angular momentum can be obtained multiplying the

φ-component of the Navier-Stokes equation by the radius of rotation,R⊥ = R0 sin θ

and average over longitude and time, denoted here by〈〉, see e.g. Miesch and Hindman

(2011). These quantities are associated with the Reynolds and magnetic stresses (Gastine

et al., 2013). According to Gilman and Dikpati (2002), the tilt in the plot 6.5 implies that
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Re(η)    λ −0.28989−0.02867i  α:0.96  and ε: 1

 

 

−2 −1 0 1 2

−2

−1

0

1

2

−0.1

−0.05

0

0.05

0.1

Re(η)    λ −0.48228−9.2543i  α:10  and ε: 1

 

 

−2 −1 0 1 2

−2

−1

0

1

2

−0.2

−0.1

0

0.1

0.2

Figure 6.5: Contour plots of the scaled height for Magnetic Rossby mode with m = 1,

ǫ = 1 with N = 50. For weak magnetic fields,α = 0.96 (left) the wave are not trapped,

then waves are polar trapped when alpha is very large:α = 10 (right).

angular momentum is transported towards the poles, as we show in this section. Because

the average for linear terms is zero, the nonlinear terms aretaken into account in this

derivation. We start from the original nonlinear equation (2.25b), and itsφ-component,

as follows

∂uφ

∂t
+ 2Ω0 cos θuθ +

1

R0

[

uθ
∂uφ

∂θ
+

uφ

sin θ

∂uφ

∂φ
+ uθuφ cot θ

]

= − g

R0 sin θ

∂h

∂φ
(6.15)

+
1

µ0ρR0

[

2B0bθ cos θ + bθ
∂bφ
∂θ

+B0
∂bφ
∂φ

+
bφ
sin θ

∂bφ
∂φ

+ bθbφ cot θ
]

.

Multiplying the equation (6.15) by the radius of rotation,R⊥ = R0 sin θ, the equation

becomes

∂

∂t
(R⊥uφ) + 2R⊥Ω0 cos θuθ +

1

R0

[

uθ
∂

∂θ
(R⊥uφ) +R0uφ

∂uφ

∂φ

]

= −g
∂h

∂φ
(6.16)

+
sin θ

µ0ρ

[

2B0bθ cos θ + bθ
∂bφ
∂θ

+B0
∂bφ
∂φ

+
bφ
sin θ

∂bφ
∂φ

+ bθbφ cot θ
]

.

Each quantity can be expressed by:

uθ =
1

2
[ûθe

i(ωt−mφ) + û∗
θe

−i(ω∗t−mφ)],



Chapter 6. Instabilities 167

where the star means complex conjugate andûθ is the amplitude of the function

depending onθ.

Averaging the equation (6.16) in time and longitude, the linear terms are zero due to the

periodicity of the solutions, then the expression takes theform

∂

∂t
〈R⊥uφ〉 = − 1

R0
〈uθ

∂

∂θ
(R⊥uφ)〉+

sin θ

µ0ρ

[

〈bθ
∂bφ
∂θ

〉+ 〈bθbφ〉 cot θ
]

. (6.17)

The first term on the right hand side of this equation is theReynolds stressand the second

term is related tothe magnetic stress(Gilman and Fox, 1997). From the definition of

angular momentumper unit volume

L = ρR⊥uφ,

the angular momentum variation is given by

∂

∂t
〈L〉 = −ρ

[

〈uθ sin θ
∂uφ

∂θ
〉+ 〈uθuφ〉 cos θ

]

+
sin θ

µ0

[

〈bθ
∂bφ
∂θ

〉+ 〈bθbφ〉 cot θ
]

.

(6.18)

Using the relations (2.27d) and (2.27e) between the velocity and the magnetic field, we

obtain

∂

∂t
〈L〉 = −ρ

[

〈uθ sin θ
∂uφ

∂θ
〉+ 〈uθuφ〉 cos θ

]

+
ρm2α2

|λ|2
[

〈uθ sin θ
∂uφ

∂θ
〉+ 〈uθuφ〉 cos θ

]

.

(6.19)

Calculating the averages, we have

〈uθuφ〉 =
1

4τωi
(1− e−2ωiτ )(ûθû

∗
φ + û∗

θûφ),

where the complex frequency of the wave can be expressed byω = ωr + iωi andτ =

2π/ωr is the period of the wave.

d

dt
〈L〉 = ρ

(1− e−2ωiτ )

4τωiR0

(m2α2

|λ|2 − 1
){

ûθ sin θ
∂û∗

φ

∂θ
+ û∗

θ sin θ
∂ûφ

∂θ

+[ûθû
∗
φ + û∗

θûφ] cot θ
}

. (6.20)
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We change the variableθ for µ = cos θ, and the differential operatorD defined before in

chapter 2. Therefore the formula (6.20) becomes

d

dt
〈L〉 = ρ

(1− e−2ωiτ )

4τωiR0

(m2α2

|λ|2 − 1
){

− ûθDû∗
φ − û∗

θDûφ + (ûθû
∗
φ + û∗

θûφ)µ
}

.(6.21)

In the context ofα andǫ large, we have an asymptotic theory explained in detail in section

6.2. In this approximation the expression for the northwardvelocity , for the moden = 0,

can be calculated with the equation (6.6)

ũθ(µ) = (8ǫ)1/4α1/2e−
√
2ǫα(1−µ)(1− µ)

1

2 , and
∂ũθ

∂µ
=

√
2ǫαũθ.

The relation between thêuθ andũθ is in section 2.4

ûθ =
2iΩ0R0

sin θ
ũθ.

Thenûθ = −û∗
θ, and the variablẽuφ in this approximation tends to

ũφ = − (λ+ 2mα2)

(λ2 −m2α2)
µûθ,

and its derivative is approximated by

∂ũφ

∂µ
= − (λ+ 2mα2)

(λ2 −m2α2)
(1 +

√
2ǫαµ)ũθ.

Substituting the results into the equation (6.21), we obtain

d

dt
〈L〉 = ρ

(1− e−2ωiτ )

8τωiR0

(m2α2

|λ|2 − 1
)[ (λ+ 2mα2)

(λ2 −m2α2)
+

(λ∗ + 2mα2)

(λ∗2 −m2α2)

]

[1− 2µ2 +
√
2ǫαµ(1− µ2)]|ûθ|2. (6.22)

In the limit of largeα, (λ2−m2α2) ∼ −2α2+ iα, and(λ+2mα2) ∼ 2kα+ iα, therefore

the factor reduces to

[ (λ+ 2mα2)

(λ2 −m2α2)
+

(λ∗ + 2mα2)

(λ∗2 −m2α2)

]

∼ −(8kα− 2)

(4α2 + 1)
, (6.23)
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wherek is an integer greater than zero defined in section 6.2. In conclusion the angular

momentum equation is

d

dt
〈L〉 = −ρ

(1 − e−2ωiτ )

8τωiR0

(m2α2

|λ|2 − 1
)(8kα− 2)

(4α2 + 1)
[1− 2µ2 +

√
2ǫαµ(1− µ2)]|ûθ|2.

(6.24)

Substituting the expression forûθ andm = 1, we have the formula

d

dt
〈L〉 = −ρ(2ǫ)1/2α

(1− e−2ωiτ )

2τωiR0

( α2

|λ|2 − 1
)(4kα− 1)

(4α2 + 1)
(6.25)

[1− 2µ2 +
√
2ǫαµ(1− µ2)]

4Ω2
0R

2
0e

−2
√
2ǫα(1−µ)

(1 + µ)
.

There is an angular momentum change which depends on latitude. It is likely that this

instabilities for magnetic Rossby waves transport angularmomentum in the system.

6.4 Summary

This chapter has reviewed the key aspects of instability formagnetic Rossby waves. As

shown instability requires two conditionsm = 1 andα > 0.5. These unstable modes

arise when the frequencies of fast and slow Rossby waves converge towards the same

value. In particular whenα is large the complex frequencies tends to

λ = −1/2 + i(α− 1/
√
2ǫ)

and the eigenfunctions for polar trapped waves are

ũθ(µ) = (1− µ)
1

2 e−
√
2ǫα(1−µ)Ln′

√
8ǫα(1− µ),

whereLn′ are the Laguerre polynomials, however we found an expression for solutions

near the pole.

It is has been reported that instabilities could be a mechanism for angular momentum

transport which might build the rotation profile in the sun.
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Chapter 7

Antisymmetric Magnetic Field

7.1 New Antisymmetric Field

In this chapter, we study the development of MHD waves for an antisymmetric field

configuration:Bφ = B0 cos θ sin θ. The polarity of the basic state of the field is now

positive in the northern hemisphere and negative in the southern. This is one of the most

striking features of the geomagnetic field. Then we expect that the results could be more

related to the geophysical and planetary observations. In addition, the main features of

the basic state of the magnetic field,B0 cos θ sin θ are that the field is zero at the equator

and the maximum in amplitude is at a latitude of45◦.

Zaqarashvili et al. (2009) carried out a investigation for shallow water MHD using this

field configuration. They solved the problem in two special cases forα2 ≪ 1. The

solutions correspond to Poincaré gravity waves and slow and fast magnetic Rossby

waves, with the particularity there is a single slow mode traveling eastward instead of

a set of solutions. The first case is forǫ ≪ 1 where the eigenfunctions corresponds to the

spherical wave functionsSmn(ǫ1, µ) for ǫ1 = ǫ1(ǫ). Then the other case forǫ ≫ 1, where

the solutions are confined to the equator.

Again the basic state is chosen for a fluid in rest, the magnetic field is a toroidal field
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Bφ = B0 cos θ sin θ and a height field constantH0 which maybe maintained by imposing

and external stress to balance the magnetic stress.

Taking the new magnetic field expression, the MHD Shallow Water model changes to

this set of equations

∂uθ

∂t
− 2Ω0cosθuφ +

g

R0

∂h

∂θ
− B0 cos θ

µ0ρR0

∂bθ
∂φ

+
2B0 cos

2 θ

µ0ρR0

bφ = 0, (7.1a)

∂uφ

∂t
+2Ω0 cos θuθ+

g

R0 sin θ

∂h

∂φ
+(1−3 cos2 θ)

B0

µ0ρR0
bθ−

B0

µ0ρR0
cos θ

∂bφ
∂φ

= 0, (7.1b)

∂h

∂t
+

H0

R0 sin θ

∂

∂θ
(sin θuθ) +

H0

R0 sin θ

∂uφ

∂φ
= 0, (7.1c)

∂bθ
∂t

− B0

R0

cos θ
∂uθ

∂φ
= 0, (7.1d)

∂bφ
∂t

− B0

R0

sin2 θuθ −
B0

R0

cos θ
∂uφ

∂φ
= 0. (7.1e)

Performing a Fourier analysis in the formei(mφ−ωt), we know that each derivative with

respect toφ or t, can be substituted by

∂

∂φ
= im and

∂

∂t
= −iω,

Then, the equations will be

−ωiuθ − 2Ω0cosθuφ +
g

R0

∂h

∂θ
− mB0 cos θ

µ0ρR0

ibθ +
2B0 cos

2 θ

µ0ρR0

bφ = 0, (7.2a)

ωuφ+2Ω0 cos θiuθ−
mg

R0 sin θ
h+(1−3 cos2 θ)

B0

µ0ρR0
ibθ−

mB0

µ0ρR0
cos θbφ = 0, (7.2b)

ωh+
H0

R0 sin θ

∂

∂θ
(sin θiuθ)−

mH0

R0 sin θ
uφ = 0, (7.2c)

ωbθ +
mB0

R0
cos θuθ = 0, (7.2d)

ωbφ −
B0

R0

sin2 θiuθ +
mB0

R0

cos θuφ = 0. (7.2e)

These are the non-dimensional parameters and variables

λ =
ω

2Ω0
, α2 =

B2
0

ρµ04Ω2R2
0

, ǫ =
4Ω2R2

0

gH0
.
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ũθ =
sin θiuθ

2Ω0R0

, ũφ =
sin θuφ

2Ω0R0

, η =
gh

4Ω2
0R

2
0

, b̃θ =
sin θibθ
B0

, b̃φ =
sin θbφ
B0

.

Changing to the dimensionless variables and parameters, the system of equations

becomes

λiũθ + µũφ + (1− µ2)
dη

dµ
+mα2µb̃θ − 2α2µ2b̃φ = 0, (7.3a)

λũφ + µũθ −mη + α2(1− 3µ2)b̃θ −mα2µb̃φ = 0, (7.3b)

ǫλ(1− µ2)η − (1− µ2)
dũθ

dµ
−mũφ = 0, (7.3c)

λb̃θ +mµũθ = 0, (7.3d)

λb̃φ − (1− µ2)ũθ +mµũφ = 0, (7.3e)

which we shall solve using a similar technique to previously.

7.1.1 Eigenvalues Method for Solving the System of Equations

As before, the solutions proposed are expansions of Associated Legendre polynomials.

Each expansion must haven ≥ m because the polynomials are not defined forn < m,

ũθ =

∞
∑

n=m

Am
n P

m
n (µ), b̃θ =

∞
∑

n=m

Bm
n Pm

n (µ),

ũφ =
∞
∑

n=m

Cm
n Pm

n (µ), b̃φ =
∞
∑

n=m

Dm
n P

m
n (µ), η =

∞
∑

n=m

Em
n Pm

n (µ).

We substitute these solutions into the equations (7.3a), (7.3b), (7.3c), (7.3d) and (7.3e),

and use the recurrence relations for Associated Legendre polynomials,

µPm
n = pnP

m
n−1 + qnP

m
n+1,

DPm
n = (n+ 1)pnP

m
n−1 − nqnP

m
n+1.

µ2Pm
n = pnpn−1P

m
n−2 + qnqn+1P

m
n+2 + [pnqn−1 + pn+1qn]P

m
n ,

where,qn = (n−m+ 1)/(2n+ 1) andpn = (n+m)/(2n+ 1). In each of (7.3) we

must set the coefficient ofPm
n (µ) to zero, to obtain a set of equations. Then, we have a
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system of equations which is a matrix equation in the formλB~v = A~v. The eigenvectors

~v are the coefficients of the Legendre expansions and the values ofλ are the eigenvalues.

These take the form

λAm
n = −2α2qn−2qn−1D

m
n−2 − (n− 1)qn−1E

m
n−1 −mα2qn−1B

m
n−1 + qn−1C

m
n−1

− 2α2(pnqn−1 + pn+1qn)D
m
n −mα2pn+1B

m
n+1 + pn+1C

m
n+1

+ (n+ 2)pn+1E
m
n+1 − 2α2pn+2pn+1D

m
n+2, (7.4)

λCm
n = −3α2qn−2qn−1B

m
n−2 + qn−1A

m
n−1 −mα2qn−1D

m
n−1

+ α2[1− 3(pnqn−1 + pn+1qn)]B
m
n +mEm

n + pn+1A
m
n+1

− 3α2pn+2pn+1B
m
n+2 −mα2pn+1D

m
n+1, (7.5)

λ{ǫ[1− pnqn−1 − qnpn+1]E
m
n − ǫpn+2pn+1E

m
n+2 − ǫqn−1qn−2E

m
n−2}

= (n− 1)qn−1A
m
n−1 +mCm

n − (n+ 2)pn+1A
m
n+1, (7.6)

λBm
n = −mqn−1A

m
n−1 −mpn+1A

m
n+1, (7.7)

λDm
n = qn−2qn−1A

m
n−2 −mqn−1C

s
n−1 − [1− (pnqn−1 + pn+1qn)]A

m
n

− mpn+1C
m
n+1 + pn+2pn+1A

m
n+2. (7.8)

The coefficientsAm
n , Dm

n , Bm
n+1, C

m
n+1, E

m
n+1 form an independent set of equations, and

the coefficientsAm
n+1, D

m
n+1, B

m
n , Cm

n , Em
n form another independent set of equations

of different symmetry. We solve each set separately using a MATLAB eigenvalue and

eigenvector solver, designed to solve the system of equationsAṽ = λBṽ.

7.1.2 First System of Equations

The first system of equation is related to the coefficientsAm
n , Dm

n , Bm
n+1, C

m
n+1, E

m
n+1

where the solutions for̃uθ and b̃φ are symmetric with respect to the equator and the
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eigenfunctions for̃bθ, ũφ andη are antisymmetric. The set of equations is

λDm
n = qn−2qn−1A

m
n−2 −mqn−1C

s
n−1 − [1− (pnqn−1 + pn+1qn)]A

m
n

− mpn+1C
m
n+1 + pn+2pn+1A

m
n+2, (7.9)

λCm
n+1 = −3α2qn−1qnB

m
n−1 + qnA

m
n −mα2qnD

m
n

+ α2[1− 3(pn+1qn + pn+2qn+1)]B
m
n+1 +mEm

n+1 + pn+2A
m
n+2

− 3α2pn+3pn+2B
m
n+3 −mα2pn+2D

m
n+2, (7.10)

λ{ǫ[1− pn+1qn − qn+1pn+2]E
m
n+1 − ǫpn+3pn+2E

m
n+3 − ǫqnqn−1E

m
n−1}

= nqnA
m
n +mCm

n+1 − (n+ 3)pn+2A
m
n+2, (7.11)

λBm
n+1 = −mqnA

m
n −mpn+2A

m
n+2, (7.12)

λAm
n = −2α2qn−2qn−1D

m
n−2 − (n− 1)qn−1E

m
n−1 −mα2qn−1B

m
n−1 + qn−1C

m
n−1

− 2α2(pnqn−1 + pn+1qn)D
m
n −mα2pn+1B

m
n+1 + pn+1C

m
n+1

+ (n+ 2)pn+1E
m
n+1 − 2α2pn+2pn+1D

m
n+2, (7.13)

wheren = m,m+ 2, m+ 4, m+ 6, ....

7.1.3 Second System of Equations

On the other hand, the second system of equation is obtained when rearrange the

equations for the other parity with coefficients:Am
n+1, Dm

n+1, Cm
n , Bm

n , Em
n .... The

eigenfunctions̃bφ andũθ are antisymmetric with respect to the equator and the solutions

for b̃θ, ũφ andη are symmetric.

λDm
n+1 = qn−1qnA

m
n−1 −mqnC

m
n − [1− (pn+1qn + pn+2qn+1)]A

m
n+1

− mpn+2C
m
n+2 + pn+3pn+2A

m
n+3, (7.14)
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λCm
n = −3α2qn−2qn−1B

m
n−2 + qn−1A

m
n−1 −mα2qn−1D

m
n−1

+ α2[1− 3(pnqn−1 + pn+1qn)]B
m
n +mEm

n + pn+1A
m
n+1

− 3α2pn+2pn+1B
m
n+2 −mα2pn+1D

m
n+1, (7.15)

λ{ǫ[1− pnqn−1 − qnpn+1]E
m
n − ǫpn+2pn+1E

m
n+2 − ǫqn−2qn−1E

m
n−2}

= (n− 1)qn−1A
m
n−1 +mCm

n − (n+ 2)pn+1A
m
n+1, (7.16)

λBm
n = −mqn−1A

m
n−1 −mpn+1A

m
n+1, (7.17)

λAm
n+1 = −2α2qn−1qnD

m
n−1 − nqnE

m
n −mα2qnB

m
n + qnC

m
n

− 2α2(pn+1qn + pn+2qn+1)D
m
n+1 −mα2pn+2B

m
n+2 + pn+2C

m
n+2

+ (n+ 3)pn+2E
m
n+2 − 2α2pn+3pn+2D

m
n+3, (7.18)

for n = m,m+ 2, m+ 4, m+ 6, ....

7.1.4 Ordinary Differential Equation Formulation

In this section, we find a differential equation for the northward velocity ũθ. From

equation (7.3d) and (7.3e), the components of the magnetic field are

b̃θ = −mµ

λ
ũθ, and b̃φ =

(1− µ2)

λ
ũθ −

mµ

λ
ũφ.

We substitutẽbθ andb̃φ, in equations (7.3a) and (7.3b), and obtain

[λ2 − 2α2µ2(1− µ2)−m2α2µ2]ũθ + (λ+ 2mα2µ2)µũφ + λ(1− µ2)
dη

dµ
= 0, (7.19)

(λ2 −m2α2µ2)ũφ + (λ+ 2mα2µ2)µũθ −mλη = 0. (7.20)

From equation (7.3c) we have the relation

ũφ =
1

m

[

ǫλ(1− µ2)η − (1− µ2)
dũθ

dµ

]

. (7.21)
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Substituting̃uφ into equations (7.19) and (7.20)

m[λ2 − 2α2µ2(1− µ2)−m2α2µ2]ũθ − (λ+ 2mα2µ2)(1− µ2)µ
dũθ

dµ

+ǫλ(λ+ 2mα2µ2)(1− µ2)µη +mλ(1− µ2)
dη

dµ
= 0, (7.22)

λ[ǫ(λ2−m2α2µ2)(1−µ2)−m2]η+m(λ+2mα2µ2)µũθ−(λ2−m2α2µ2)(1−µ2)
dũθ

dµ
= 0.

(7.23)

Isolatingη in equation (7.23), the expression becomes

η =
1

λ[ǫ(λ2 −m2α2µ2)(1− µ2)−m2]

[

(λ2−m2α2µ2)(1−µ2)
dũθ

dµ
−m(λ+2mα2µ2)µũθ

]

.

(7.24)

and so

dη

dµ
=

1

λ[ǫ(λ2 −m2α2µ2)(1− µ2)−m2]

{

2ǫλ[λ2 +m2α2(1− 2µ2)]µη

−m(λ + 6mα2µ2)ũθ

−[λ(m+ 2λ) + 2m2α2(1− 2µ2)]µ
dũθ

dµ
+ (λ2 −m2α2µ2)(1− µ2)

d2ũθ

dµ2

}

. (7.25)

Substitutingη and its derivative into equation (7.22), the resulting expression gives

(1− µ2)
d2ũθ

dµ2
+

2m2[λ2 +m2α2(1− 2µ2)]

(λ2 −m2α2µ2)[ǫ(λ2 −m2α2µ2)(1− µ2)−m2]
µ
dũθ

dµ

+

{[

1

1− µ2
− 2α2µ2

(λ2 −m2α2µ2)

]

[ǫ(λ2 −m2α2µ2)(1− µ2)−m2]

− [m(λ + 6mα2µ2) + ǫ(λ+ 2mα2µ2)2µ2]

(λ2 −m2α2µ2)

− 2ǫm(λ + 2mα2µ2)[λ2 +m2α2(1− 2µ2)]µ2

(λ2 −m2α2µ2)[ǫ(λ2 −m2α2µ2)(1− µ2)−m2]

}

ũθ = 0. (7.26)

The problem is mathematically more complicated than the symmetric field and the

simplification of the equations is more difficult. New factors have been introduced, for

instance(λ2 −m2α2µ2); this produces an Alfvén speed or frequencies dependent onthe
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latitude. Arregui and Ballester (2011) has shown that if theAlfvén speed varies with

latitude then, the modes form a continuous set.

There is the possibility ofλ2 = m2α2µ2 and this leads to singularities in the equation

and critical layers whenµ2 = λ2/m2α2. The behaviour of the critical layer is a nonlinear

problem and dissipative effects become important (Maslowe, 1986), but this case is

beyond the scope of this thesis.

7.1.5 Normalization Constant

Through the original set of equations, we will try to find an expression for the energy of

the system and use this as a normalization constant for the eigenfunctions. Starting from

the equations for the MHD Shallow water model we will derive these expressions.

Multiplying equation (7.1a) byuθ and (7.1b) byuφ

∂

∂t
(
1

2
u2
θ)− 2Ω0 cos θuθuφ +

g

R0
uθ

∂h

∂θ
− B0 cos θ

µ0ρR0
uθ

∂bθ
∂φ

+
2B0 cos

2 θ

µ0ρR0
uθbφ = 0, (7.27)

∂

∂t
(
1

2
u2
φ) + 2Ω0 cos θuφuθ +

g

R0 sin θ
uφ

∂h

∂φ
+ (1− 3 cos2 θ)

B0

µ0ρR0
uφbθ

− B0

µ0ρR0

cos θuφ
∂bφ
∂φ

= 0 (7.28)

Adding equations (7.27) and (7.28), we have

∂

∂t
(
1

2
u2
θ +

1

2
u2
φ) +

g

R0
uθ

∂h

∂θ
+

g

R0 sin θ
uφ

∂h

∂φ
− B0 cos θ

µ0ρR0

(

uθ
∂bθ
∂φ

+ uφ
∂bφ
∂φ

)

+(1− 3 cos2 θ)
B0

µ0ρR0
uφbθ +

2B0 cos
2 θ

µ0ρR0
uθbφ = 0. (7.29)

Multiply equations (7.1d) byH0bθ
ρµ0

and (7.1e) byH0bφ
ρµ0

, the equations are

∂

∂t

( H0

2ρµ0
b2θ
)

− B0H0

ρµ0R0
cos θbθ

∂uθ

∂φ
= 0, (7.30)

∂

∂t

( H0

2ρµ0
b2φ
)

− B0H0

ρµ0R0
sin2 θbφuθ −

B0H0

ρµ0R0
cos θbφ

∂uφ

∂φ
= 0. (7.31)
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Multiplying the equation (7.29) byH0 and adding to equations (7.30) and (7.31), we

obtain

∂

∂t

[

H0

2
(u2

θ + u2
φ +

b2θ
ρµ0

+
b2φ
ρµ0

) +
1

2
gh2

]

+
gH0

R0
uθ

∂h

∂θ
+

gH0

R0 sin θ
uφ

∂h

∂φ
+

gH0

R0 sin θ
h
∂

∂θ
(sin θuθ) +

gH0

R0 sin θ
h
∂uφ

∂φ

− H0B0

ρµ0R0

cos θ
∂

∂φ

(

uθbθ + uφbφ
)

+ (1− 3 cos2 θ)
B0H0

ρµ0R0

(uφbθ − uθbφ) = 0. (7.32)

The last equation can be expressed using differential operators

∂

∂t

[

H0

2
(u2

θ + u2
φ +

b2θ
ρµ0

+
b2φ
ρµ0

) +
1

2
gh2

]

− H0B0

ρµ0R0

cos θ
∂

∂φ
(~u ·~b)

+gH0∇ · (h~u) + B0H0

ρµ0R0
(1− 3 cos2 θ)(uφbθ − uθbφ) = 0. (7.33)

Performing a Fourier analysis, in the formei(mφ−ωt), for the equations (7.1d) and (7.1e)

where the frequencyω is real. Then evaluating the termuφbθ − uθbφ, we have

uφbθ − uθbφ =
B0

ω2R0
sin2 θ

∂

∂t

(

1

2
u2
θ

)

.

Substituting this factor in the equation (7.33) , we obtain

∂

∂t

[

H0

2
(u2

θ + u2
φ +

b2θ
ρµ0

+
b2φ
ρµ0

) +
1

2
gh2 +

B2
0H0

ρµ0ω2R2
0

(1− 3 cos2 θ) sin2 θ

(

1

2
u2
θ

)]

−H0B0

ρµ0R0
cos θ

∂

∂φ
(~u ·~b) + gH0∇ · (h~u) = 0.

(7.34)

Integrating this formula over an area, yields

∫ ∫

∂

∂t

[

H0

2
(u2θ + u2φ +

b2θ
ρµ0

+
b2φ
ρµ0

) +
1

2
gh2 +

B2
0H0

ρµ0ω2R2
0

(1− 3 cos2 θ) sin2 θ

(

1

2
u2θ

)]

dS

−
∫ ∫

H0B0

ρµ0R0
cos θ

∂

∂φ
(~u ·~b)dS +

∫ ∫

gH0∇ · (h~u)dS = 0.

(7.35)
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The second and third integral are zero and the third one, because the eigenfunctions are

periodic inφ.

Then, equation (7.35) becomes

∂

∂t

∫ ∫
{

H0

2
(u2

θ + u2
φ +

b2θ
ρµ0

+
b2φ
ρµ0

) +
1

2
gh2

+
B2

0H0

ρµ0ω2R2
0

(1− 3 cos2 θ) sin2 θ

(

1

2
u2
θ

)

dS

}

= 0. (7.36)

The equation for the conservation of energy has an extra term, compared to equation

(2.47) due to the magnetic field configuration.Changing variables to the non dimensional

quantities

∂

∂t

∫ ∫

2Ω2

0
R2

0
H0

{

1

sin2 θ
[ũ2

θ + ũ2

φ + α2(b̃2θ + b̃2φ)] + ǫη2 +
α2

λ2
(1− 3 cos2 θ)ũ2

θ

}

dS = 0.

(7.37)

Defining the energy per mass of the system as a constant in timeas it follows

E =

∫ π

0

4πΩ2

0R
4

0H0

{

1

sin2 θ
[ũ2

θ + ũ2

φ + α2(b̃2θ + b̃2φ)] + ǫη2 +
α2

λ2
(1− 3 cos2 θ)ũ2

θ

}

sin θdθ.

(7.38)

LetE = 4πΩ2
0R

4
0H0, to normalize the last equation. Then

∫ π

0

{

1

sin2 θ
[ũ2

θ + ũ2
φ + α2(b̃2θ + b̃2φ)] + ǫη2 +

α2

λ2
(1− 3 cos2 θ)ũ2

θ

}

sin θdθ = 1. (7.39)

Let γ a normalization constant for the eigenfunctions and substitute them into the

equation (7.39)

ũθ = γ
∞
∑

n=m

Am
n P

m
n (µ) eimφ−iωt, b̃θ = γ

∞
∑

n=m

Bm
n Pm

n (µ) eimφ−iωt,

ũφ = γ

∞
∑

n=m

Cm
n Pm

n (µ) eimφ−iωt, b̃φ = γ

∞
∑

n=m

Dm
n P

m
n (µ) eimφ−iωt,

η = γ

∞
∑

n=m

Em
n Pm

n (µ) eimφ−iωt.
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We use again this important result

uθu
∗
θ =

γ2

2

N
∑

n=m

N
∑

k=m

Am
n A

m
k

∗Pm
n (µ)Pm

k (µ),

where the star means complex conjugate. After some algebra we obtain forµ = cos θ

γ2
∞
∑

n=m

∞
∑

k=m

∫ 1

−1

{

(Am
n A

m
k

∗ + Cm
n Cm

k
∗)

1− µ2
+

α2(Bm
n Bm

k
∗ +Dm

n D
m
k

∗)

(1− µ2)

−3α3

λ2
Am

n A
m
k

∗µ2 +
[

ǫEm
n Em

k
∗ +

α2

λ2
Am

n A
m
k

∗]
}

Pm
n (µ)Pm

k (µ) dµ = 1. (7.40)

Some integrals have to be evaluated in this equation

1

γ2
=

∞
∑

n=m

∞
∑

k=m

[

(Am
n A

m
k

∗ + Cm
n Cm

k
∗) + α2(Bm

n Bm
k

∗ +Dm
n D

m
k

∗)
]

∫ 1

−1

Pm
n (µ)Pm

k (µ)

(1− µ2)
dµ

−
∞
∑

n=m

∞
∑

k=m

3α2

λ2
Am

n A
m
k

∗
∫ 1

−1

µ2Pm
n (µ)Pm

k (µ) dµ

+
∞
∑

n=m

∞
∑

k=m

[

ǫEm
n Em

k
∗ +

α2

λ2
Am

n A
m
k
∗]
∫ 1

−1

Pm
n (µ)Pm

k (µ) dµ = 1.

(7.41)

In order to calculate the normalization constantγ, we have to evaluate the integrals with

the Legendre polynomials (Abramowitz and Stegun, 1964),

∫ 1

−1

Pm
n (µ)Pm

k (µ) dµ =
2(n+m) !

(2n+ 1)(n−m) !
δnk, (7.42)

Imnk =

∫ 1

−1

Pm
n (µ)Pm

k (µ)

(1− µ2)
dµ =



















(n+m) !
m(n−m) !

if n < k whenn andk have the same parity,
(k+m) !
m(k−m) !

if k < n whenn andk have the same parity,

0, if n andk have different parity,

(7.43)
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∫ 1

−1

µ2Pm
n (µ)Pm

k (µ) dµ =
(n+m)(n +m− 1)

(2n+ 1)(2n− 1)

2(n+m− 2) !

(2n− 3)(n−m− 2) !
δn−2,k

+
[ (n−m)(n+m)

(2n+ 1)(2n− 1)
+

(n−m+ 1)(n+m+ 1)

(2n+ 3)(2n+ 1)

] 2(n+m) !

(2n+ 1)(n−m) !
δn,k

+
(n−m+ 1)(n−m+ 2)

(2n+ 3)(2n+ 1)

2(n+m+ 2) !

(2n+ 5)(n−m+ 2) !
δn+2,k.(7.44)

7.2 Numerical results

Turning now to the numerical solutions of the MHD Shallow water equations for an

antisymmetric field, a summary of the main findings is presented here. Our main results

may be classified depending on their dispersion relation into MIG waves, fast magnetic

Rossby waves and an anomalous slow mode travelling westward. We found a notable

difference in our results between the symmetric and the antisymmetric field. The slow

magnetic Rossby waves disappear from the solutions in the antisymmetric calculation.

A possible explanation is that these waves are a result of a balance between the Coriolis

force and the magnetic field, but in this case the magnetic field is zero at the equator.

Now there is just one slow mode.

7.2.1 Smallα Regime

Whenα is small, the behaviour of the waves is comparable with that found in chapter 4,

as expected. Comparing the tables for the eigenvalues, it can be seen that there is a slight

difference between the eigenvalues whenα is 0.1. In general the eigenvalues follow the

results of Longuet-Higgins (1968). By contrast, the set of slow magnetic Rossby waves

are not present in the numerical result. There is only one slow mode travelling to the west.
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Fast Magnetic Rossby Waves

The fast magnetic Rossby waves are travelling to the west, and for large values ofǫ or

moderate values ofα, these waves are equatorially trapped. In tables 7.1, 7.2 and 7.3, the

values for the normalized frequency are shown, form = 1 and poloidal wavenumbers

n = 1, 2, 3 respectively. Whenǫ andα are small, the fast Rossby wave has frequency

(equation (3.18))

λ ≈ − m

n(n + 1)
. (7.45)

Whenǫ is large, according to Longuet-Higgins (1968), the fast magnetic Rossby waves

have the following dispersion relation forµ ≥ 1

λ ≈ − m

ǫ1/2(2ν + 1)
. (7.46)

This formula correspond to the equation (4.4). The eigenvalues for the first fast magnetic

Rossby mode,n = 1, are reported in table 7.1. For smallǫ the values agree with the

formula (7.45) forn = 1. For ǫ large (10 and100) these values correspond to the first

MIG wave, the negative root in equation (4.2), withν = 0. This is themagnetic mixed

Rossby-gravitymode.

Table 7.1: Eigenvaluesλ for different values ofα andǫ. Magneto mixed Rossby-gravity

mode,n = 1, m = 1 andN = 50 : Waves travelling westward.

α 10−3 10−2 10−1

ǫ = 0.01 -0.49988750 -0.4998751 -0.4999

ǫ = 0.1 -0.4987547 -0.4987552 -0.4988

ǫ = 1 -0.4879711 -0.4879751 -0.4884

ǫ = 10 -0.4139875 -0.4140077 -0.4160

ǫ = 100 -0.2710 -0.2710 -0.273323

The velocity field for the magnetic mixed Rossby-gravity wave for this antisymmetric

field has the same solutions as for the symmetric problem. As illustrated in figure 7.1,
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the waves are equatorially trapped for largeǫ and there is no significant variation whenα

increases from10−3 to 10−1.
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Figure 7.1: Numerical solution for the velocity with different values of ǫ in magnetic mixed

Rossby-gravity mode travelling westward forn = 1, m = 1 andN = 50. The first row

corresponds tõuθ/ sin θ andũφ/ sin θ for the second one. The parameterα is increasing in

each column (10−3 and10−1).

Figure 7.2 shows the equatorial trapping for large values ofǫ. When ǫ is small, the

solutions correspond to the Legendre polynomials. In theseplots there is no difference

whenα is increases.
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Figure 7.2: Numerical solution for the scaled heightη
√
ǫ with different values ofǫ in

magnetic mixed Rossby-gravity mode travelling westward for n = 1, m = 1 andN = 50.

The first column corresponds toα = 10−3 and the second one toα = 10−1.

Figure 7.3 shows the magnetic field components are equatorially trapped waves when

the rotation is fast. Also, as expected, the amplitudes of the field are higher than the

amplitudes of the velocity, because the magnetic field is proportional to∼ λ−1, from

equations (7.3d) and (7.3e).In contrast to the symmetric field case, the behaviour of the

magnetic field will change in this case; now it is not directlyproportional to the velocity,

as shown in equation (7.3e).
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Figure 7.3: Numerical solution for the magnetic field with different values ofǫ in magnetic

mixed Rossby-gravity mode travelling westward forn = 1, m = 1 andN = 50. The first

row corresponds tõbθ/ sin θ andb̃φ/ sin θ for the second one. The parameterα is increasing

in each column (10−3 and10−1).

Table 7.2 corresponds to the eigenvalues forn = 2 in the formula (7.45), withǫ small.

However, these results tend to deviate from the expected value whenα increases to0.1

whereas for the symmetric case the values are more accurate asα increases. In the large

ǫ region the values correspond toν = 1 in the expression (7.46) and an instability starts

nearα = 0.1. Note that for the antisymmetric field, instability can occur for α smaller

than0.5, which was a lower bound for the symmetric field.
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Table 7.2: Eigenvaluesλ for different values ofα andǫ. Fast magnetic Rossby mode,n = 2,

m = 1 andN = 50: Waves travelling westward.

α 10−3 10−2 10−1

ǫ = 0.01 -0.16651 -0.16657 -0.17258

ǫ = 0.1 -0.16515 -0.16521 -0.17129

ǫ = 1 -0.15297 -0.15303 -0.15973

ǫ = 10 -0.09495 -0.09502 -0.10338

ǫ = 100 -0.03308 -0.03315 −0.03749± 3.75× 10−4i

Table 7.3 gives the results forn = 3 whenǫ is small which corresponds to the eigenvalue

for ν = 2 whenǫ is large. The eigenvalues deviate from the formula (7.45) whenα tends

to 0.1. In chapter 4, it has been demonstrated that for fast magnetic Rossby waves the

wave number followsν = n −m, wheren is the poloidal wave number for smallǫ and

ν is its counterpart for largeǫ theory (Longuet-Higgins, 1968).

Table 7.3: Eigenvaluesλ for different values ofα andǫ. Fast magnetic Rossby modesn = 3,

m = 1 andN = 50: Waves travelling westward.

α 10−3 10−2 10−1

ǫ = 0.01 -0.0832992 -0.0836288 -0.1140

ǫ = 0.1 -0.0829632 -0.0832929 -0.1137

ǫ = 1 -0.0797535 -0.080839 -0.1109

ǫ = 10 -0.0580295 -0.0583440 -0.0998

ǫ = 100 -0.0207079 -0.0209418−0.09883 + 0.129372i
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Magneto-Inertial Gravity Waves

The magneto-inertial gravity waves are the highest frequency modes. In general for large

ǫ or largeα these waves are equatorially trapped. Also these oscillations produce higher

amplitudes in the variableη which is the scaled height. Longuet-Higgins (1968) notes

that when the rotation parameter is low the potential energyand the kinetic energy are

in the same proportion, but if the rotation parameter increases the kinetic energy is three

times higher than the potential energy.

The first moden = 1 of MIG waves travelling eastwards is reported in table 7.4. The

eigenvalues forǫ small can be calculated with the expression (equation (4.1))

λ = ±
√

n(n + 1)

ǫ
, (7.47)

and whenǫ is large the eigenvalues can be calculated with the dispersion relation for the

Kelvin mode.

Table 7.4: Eigenvaluesλ for different values ofα and ǫ. Magneto-inertial gravity waves

n = 1, m = 1 andN = 50: Waves travelling eastward.

α 10−3 10−2 10−1

ǫ = 0.01 13.8996 13.8996 13.8995

ǫ = 0.1 4.24517 4.24517 4.26646

ǫ = 1 1.23068 1.23068 1.23068

ǫ = 10 0.3445680 0.3445785 0.3456434

ǫ = 100 0.1026271 0.1026485 0.1047540

There is a wave forn = 1 of similar frequency travelling to the west but whenǫ is large

the wave turns into theν = 1 mode in the relation dispersion (4.2), see table 7.5. As

expected, the frequencies for westward waves are greater than the eastward ones.



Chapter 7. Antisymmetric Magnetic Field 189

Table 7.5: Eigenvaluesλ for different values ofα andǫ. Magneto-inertial gravity waves,

n = 1, m = 1 andN = 50: Waves travelling westward.

α 10−3 10−2 10−1

ǫ = 0.01 -14.3997 -14.3997 -14.3997

ǫ = 0.1 -4.74640 -4.74639 -4.26701

ǫ = 1 -1.74147 -1.74146 -1.74085

ǫ = 10 -0.8818762 -0.8818721 -0.881443

ǫ = 100 -0.5283587 -0.5283814 -0.5306403

Next, the moden = 2 for waves travelling eastward is reported in table 7.6. Whenǫ

is large, this corresponds to the modeν = 0 for the formula (4.2). We notice that with

increasingα the variation in the value ofλ is not significant.

Table 7.6: Eigenvaluesλ for different values ofα andǫ. Magneto-inertial gravity waves,

n = 2, m = 1 andN = 50: Waves travelling eastward.

α 10−3 10−2 10−1

ǫ = 0.01 24.4188 24.4188 24.4188

ǫ = 0.1 7.6851 7.6851 7.6852

ǫ = 1 2.4316 2.4316 2.4321

ǫ = 10 0.8459042 0.8459314 0.8486

ǫ = 100 0.3796 0.3797 0.3830271

The eigenfunctions for the moden = 2, travelling to the east are trapped at the equator

whenǫ is large, as shown in figure 7.4. For smallǫ, the eigenfunctions are the Legendre

polynomials. The increase inα does not produce a significant change in the eigenvalues

or eigenfunctions.
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ũ
θ
/s

in
θ

 

 

ε=10−2

ε=10−1

ε=1

ε=101

ε=102

α = 10−3

0 20 40 60 80
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

colatitude (degrees)
ũ
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Figure 7.4: Numerical solution of the velocity with different values ofǫ in magneto-inertial

gravity wave travelling eastward for the second mode withn = 2, m = 1 andN = 50.

The first row corresponds tõuθ/ sin θ andũφ/ sin θ for the second one. The parameterα is

increasing in each column (10−3 and10−1).

Figures 7.4 and 7.5 show that MIG waves travelling eastward are equatorially trapped

when ǫ is large. In the smallǫ regime the waves are Legendre functions. When

α increases to0.1, the eigenfunctions are not significantly changed from their

hydrodynamic counterparts.
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Figure 7.5: Numerical solution of the scaled heightη
√
ǫ with different values ofǫ in

magneto inertial gravity wave travelling eastward for the second moden = 2, m = 1 with

N = 50. The first column corresponds toα = 10−3 andα = 10−1 the second one.

The features of the magnetic field are shown in figure 7.6. Theφ component is symmetric

with respect to the equator whereas theθ component is antisymmetric, for then = 2

mode, opposite to the respective components of the velocity. The waves are equatorially

trapped for largeǫ and there is little variation whenα is equal to0.1.
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Figure 7.6: Numerical solution of the magnetic field with different values ofǫ in magneto-

inertial gravity wave travelling eastward for the second mode with n = 2 ,m = 1 and

N = 50. The first row corresponds tõbθ/ sin θ and b̃φ/ sin θ for the second one. The

parameterα is increasing in each column (10−3 and10−1).

As tables 7.6 and 7.7 very clearly demonstrate, westward waves propagate slightly faster

than eastward ones; whenǫ is large the eigenvalues correspond to theν = 1 mode for

the formula (4.2). The presence of the magnetic field does notmodify considerably the

eigenvalues or eigenfunctions in this weak field regime (α = 10−3 → 0.1).
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Table 7.7: Eigenvaluesλ for different values ofα andǫ. Magneto-inertial gravity waves,

n = 2, m = 1 andN = 50: Waves travelling westward.

α 10−3 10−2 10−1

ǫ = 0.01 -24.5857 -24.5857 -24.5857

ǫ = 0.1 -7.8533 -7.8533 -7.8533

ǫ = 1 -2.6129 -2.6129 -2.6125

ǫ = 10 -1.1119 -1.1118 -1.1097

ǫ = 100 -0.6784 -0.6785 -0.6801381

Figure 7.7 illustrates the velocity field components for then = 2 westward MIG wave.

In the case whenǫ is small, the amplitude of the velocity increases withǫ for westward

waves in contrast to the eastward waves. Then, forǫ large, the waves are equatorially

trapped and the solution correspond toν = 3 in the largeǫ theory. There is no significant

difference between a weak field and a moderate field for this mode.
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ũ

θ
/s

in
θ

 

 

ε=10−2

ε=10−1

ε=1

ε=101

ε=102

α = 10−1

0 20 40 60 80
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

colatitude (degrees)

ũ
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Figure 7.7: Numerical solution of the velocity with different values ofǫ in magneto-inertial

gravity wave travelling westward for the second moden = 2, m = 1 with N = 50. The first

row corresponds tõuθ/ sin θ andũφ/ sin θ for the second one. The parameterα is increasing

in each column (10−3 and10−1).

In figure 7.8 the scaled height is plotted for the moden = 2. The waves are equatorially

trapped for largeǫ and the influence of the magnetic field, weak or moderate, doesnot

change the shape of the waves. In the smallǫ case, there is little difference between

waves propagating to the east or west for this variableη.
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Figure 7.8: Numerical solution of the scaled heightη
√
ǫ with different values ofǫ in

magneto-inertial gravity wave travelling westward for thesecond mode withn = 2, m = 1

andN = 50. The first column corresponds toα = 10−3 andα = 10−1 the second one.

The magnetic field components for then = 2 westward propagating mode are

represented in figure 7.9. Theθ component is antisymmetric whereas theφ component of

the field is symmetric with respect to the equator, in contrast to the velocity components.

The waves are equatorially trapped for largeǫ and there is little difference between the

eigenfunctions when the magnetic parameter increases from10−3 to 0.1. On the other

hand, the wave forms of the westward components of the magnetic field are completely

different to the eastward field.
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Figure 7.9: Numerical solution of the magnetic field with different values ofǫ in magneto-

inertial gravity wave travelling westward for the second mode with n = 2, m = 1 and

N = 50. The first row corresponds tõbθ/ sin θ and b̃φ/ sin θ for the second one. The

parameterα is increasing in each column (10−3 and10−1).

The eigenvalues for the eastward moden = 3 are reported in table 7.8 and the values

are consistent with the formula (7.47) with accuracy for small ǫ. This corresponds to the

hydrodynamic formula for gravity waves. Ifǫ is large, they turn into the modeν = 1 of

the formula (4.2). Whenα increases, the values ofλ do not change significantly. These

waves are equatorially trapped for the field intensities ofα ∼ 0.1 and largeǫ.
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Table 7.8: Eigenvaluesλ for different values ofα andǫ. Magneto-inertial gravity waves,

n = 3, m = 1 andN = 50: Waves travelling eastward.

α 10−3 10−2 10−1

ǫ = 0.01 34.6055 34.6055 34.6056

ǫ = 0.1 10.9321 10.9321 10.9324

ǫ = 1 3.4819 3.4819 3.4829

ǫ = 10 1.216644 1.2167 1.2210

ǫ = 100 0.5750407 0.5751020 0.5810703

Table 7.9 presents a summary of frequencies for the westwardpropagating MIG waves

with n = 3. In the small ǫ regime the values reproduce the formula (7.47) for

hydrodynamic gravity waves. In our numerical results, the waves travelling to the west

are slightly faster than the eastward ones. Whenǫ is large the waves are equatorially

trapped and the eigenvalues turn into the modeν = 2 of the dispersion relation (4.2).

Increasing the magnetic field does not change the eigenfunctions or eigenvalues, in the

smallα range.

Table 7.9: Eigenvaluesλ for different values ofα andǫ. Magneto-inertial gravity waves,

n = 3, m = 1 andN = 50: Waves travelling westward.

α 10−3 10−2 10−1

ǫ = 0.01 -34.6889 -34.6889 -34.6889

ǫ = 0.1 -11.0158 -11.0158 -11.0160

ǫ = 1 -3.5690 -3.5690 -3.5692

ǫ = 10 -1.3400 -1.3400 -1.3384

ǫ = 100 -0.7913028 -0.7913090 -0.7919053
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Anomalous Mode

The new anomalous mode was found in the presence of the magnetic field, propagating

westward with a very low frequency. This is the first slow magnetic Rossby mode which

collides with the first fast magnetic Rossby waven = 1 and the wave becomes unstable,

only for m = 1. The normalized frequency is summarized in table 7.10,from these

numerical results, the frequency of the wave can be approximated byλ = −4
√
2

100
ǫα4.

Table 7.10: Eigenvalues for different values ofα andǫ, n = 1, m = 1 andN = 50, the

anomalous westward slow magnetic Rossby mode.

α 10−3 10−2 10−1

ǫ = 0.01 **** **** −5.5851× 10−8

ǫ = 0.1 **** **** −5.6038× 10−7

ǫ = 1 **** **** −5.6079× 10−6

ǫ = 10 **** −5.6048× 10−9 −5.6465× 10−5

ǫ = 100 −6.5908× 10−11 −5.6071× 10−8 −5.9988× 10−4

Figure 7.10 shows the northward velocity for the anomalous mode, which can be

approximated byũθ ∼ sin θ and the northward component of the magnetic field

perturbation. Also the eigenfunction forũθ is symmetric whereas̃bθ is antisymmetric.
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Figure 7.10: Numerical solution of the velocity and the magnetic field forthe anomalous

slow mode travelling westward withα = 0.1, m = 1 andN = 80.

Numerical results indicate that ifǫα2 becomes near1 the numerical method is not able to

compute the eigenfunctions at the poles and for very small frequencies the eigenvalues

are not accurate.

7.2.2 Largeα Regime

Magnetic Rossby waves

The fast magnetic Rossby waves can become unstable afterα ∼ 0.1 and two modes

coalesce and turn into a complex mode. The unstable modes remain complex for certain

range ofǫ and then suddenly split apart again, to give two real eigenvalues. This

coalescence and separation continues asǫ is increased. Figure 7.11(a) illustrates this

point clearly. These results therefore need to be calculated with caution because the

eigenvalues coalesce with different modes depending on thevalue ofǫ or α.
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Figure 7.11: Dispersion relation for fast magnetic Rossby waves forα = 1, m = 1 with

N = 50. When two modes coalesce they become complex and we plot onlythe real part of

λ.(a) Then = 1 mode in blue,n = 3 in green,n = 5 in red and so on. (b) The moden = 1

coalesces with the anomalous mode.

These numerical results would seem to suggest that there is no instability form 6= 1.

We looked extensively atm = 2 andm = 3 modes, but we never found any numerical

evidence for unstable modes in the antisymmetric field case.

The eigenvalues for the fast magnetic Rossby moden = 1 are reported in table 7.11. The

first fast mode coalesces with an anomalous mode and whenα increasesλ → −0.5 +

mαi. Even though the behaviour for the other modes with the same parity is different,

they become complex at certain value ofα then develop into real again, and so on, see

figure 7.11(b).The complete plot of this web is not shown here.

The fast magnetic Rossby waves undergo polar trapping when the magnetic field is strong

or the rotation is fast.
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Table 7.11: Eigenvaluesλ for different values ofα and ǫ. Fast magnetic Rossby mode,

n = 1, m = 1 andN = 50 : Waves travelling westward.

α 1 101 102 103

ǫ = 0.01 -0.4998720 -0.2740+1.6404i -0.4886020+87.4544i -0.49897+987.72i

ǫ = 0.1 -0.4987279 -0.4441+5.8565i -0.4967+96.0964i -0.49962+996.03i

ǫ = 1 -0.4916683 -0.4886+8.7318i -0.4990+98.7711i -0.49965+997.71i

ǫ = 10 -0.4929 -0.4967+9.5969i -0.4996+99.6013i -0.49964+997.86i

ǫ = 100 -0.4878+0.7248i -0.4990+9.8646i -0.4996+99.7693i -0.49964+997.87i

The second fast magnetic Rossby moden = 2 coalesces with the moden = 4 and

become complex afterα = 1. For largeα, the real part ofλ tends to−0.5 and the

imaginary part tends tomα. These waves are confined at the poles for largeα andǫ.

Table 7.12: Eigenvaluesλ for different values ofα and ǫ. Fast magnetic Rossby mode,

n = 2, m = 1 andN = 50: Waves travelling westward.

α 1 101 102 103

ǫ = 0.01 -0.17610 -0.05521+0.594i -0.48860+87.45i -0.49897+963.20i

ǫ = 0.1 -0.17596 -0.44598+5.838i -0.49667+96.10i -0.49968+996.12i

ǫ = 1 -0.03308+0.0298i -0.45212+6.213i -0.49897 + 98.77i -0.49982 + 998.55i

ǫ = 10 -0.43153+0.0373i -0.49667+9.597i -0.49962+99.60i -0.49982 + 998.87i

ǫ = 100 -0.48785+0.7248i -0.49897+9.865i -0.49982 + 99.85i -0.49982+ 998.90i

Magneto-inertial gravity waves

The highest frequencies correspond to MIG waves. As shown inchapter 4 these waves

have superalfvénic frequencies (|λ| > mα) and are stable in the symmetric field case. For

largeα, for a givenǫ, the velocity becomes subalfvénic and the modes seem to disappear.
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In table 7.13 the possible eigenvalues are summarized for the moden = 2 travelling

eastward and the result for the moden = 2 travelling westward are reported in table

7.14. The spaces with stars reflect that the eigenvalues are not reliable.

Table 7.13: Eigenvaluesλ for different values ofα andǫ. Magneto-inertial gravity waves,

n = 2, m = 1 andN = 50: Waves travelling eastward.

α 1 101

ǫ = 0.01 24.4200 24.6383

ǫ = 0.1 7.6926 ****

ǫ = 1 2.4909 ****

ǫ = 10 1.0337 ****

Table 7.14: Eigenvaluesλ for different values ofα andǫ. Magneto-inertial gravity waves,

n = 2, m = 1 andN = 50: Waves travelling westward.

α 1 101

ǫ = 0.01 -24.5858 -24.7021

ǫ = 0.1 -7.8504 ****

ǫ = 1 -2.5763 ****

Figure 7.12 shows the scaled height against colatitude; thewaves are equatorially trapped

whenǫ increases forα = 1, but for large values ofα, and even forα = 1 whenǫ is large,

the mode disappears. The eigenfunctions cannot be calculated beyond this point.



Chapter 7. Antisymmetric Magnetic Field 203

0 20 40 60 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

colatitude (degrees)

η
√
ǫ

 

 

ε=10−2

ε=10−1

ε=1

ε=101

Figure 7.12: Numerical solution for the scaled height:η
√
ǫ. Second moden = 2 for

magneto-inertial gravity waves travelling eastward withα = 1, m = 1 andN = 50.

There is a value of the parameterα after which the frequency of the MIG waves becomes

subalfvénic: |λ| < mα. Whenα goes beyond that point the eigenfunctions present a

problem nearµ = ±1 because the factorλ2−m2α2µ2, which appears in equation (7.26),

becomes zero near there. This means the equation becomes singular. The modes could

not be found beyond this critical particular value ofα, suggesting that a critical layer

occurs.

The critical point occurs for a certain value ofα, as shown in table 7.15 for the westward

and eastward second MIG mode.
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Table 7.15: Value ofα after which the wave speed become subalfvénic. For the second

magneto-inertial gravity waves:n = 2, m = 1 andN = 50. Waves travelling westward and

eastward.

Westward Eastward

ǫ = 0.01 28.6 28.7

ǫ = 0.1 8.9 9

ǫ = 1 2.7 2.9

ǫ = 10 0.9 1.0

ǫ = 100 0.8 0.4

The critical point increases whenǫ is small, and the difference between eastward and

westward modes is evident whenǫ is large. For smallǫ andn = 2, m = 1 with N = 50.

The numerics suggest that the critical value ofα is given approximately by

αcrit =
2
√
2√
ǫ
. (7.48)

Note in table 7.15 that there is little difference between eastward and westward

propagating waves. For large values ofǫ the critical value tends to

αcrit = ±
√
2ν + 1

ǫ1/4
+

1

(4ν + 2)ǫ1/2
. (7.49)

In both cases theα value tends to be proportional to the frequency of the gravitational

waves for small or largeǫ, we call this valueλg.

In our numerical results at the critical pointλ = mα whereα is proportionalto the

frequency of the gravity waves. Then asλ → λg, there is a critical point near the poles

(µ = ±1).

Also equation (7.26) has a singularity because the factor(λ2−m2α2µ2) tends to zero for

the critical pointµ = ±1 whenλ = mα for MIG waves.

The findings from these numerical results suggest that thereis a critical layer because
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there are no waves after a critical point. A critical layer could be defined as a region

below a critical point with a considerable change of the momentum, also it might absorb

the waves. The absorption of waves is evident in gravity waves (Bühler, 2014).

The critical layer is a non-linear problem that is beyond of the purpose of this thesis, but it

is another possible area of future research. Several methods currently exist for studying

how the waves interact with the critical layer; one common answer is to set complex

frequencies asλ = λr + iλi (Bühler, 2014) or consider viscosity (Wahlén, 2009). Also

in the literature there are other methods (Aasen and Varholm, 2016).

7.3 Analytical Approaches

7.3.1 Cartesian Coordinates Approximation

In this section, we develop an approximation for a weak antisymmetric magnetic field,

similarly to the method of Zaqarashvili et al. (2007), in order to enumerate the types of

waves that we can find.

Figure 7.13: Tangent plane geometry.

In Cartesian coordinates there is an analogous

antisymmetric field for the shallow water

system, when the basic state of the magnetic

field is Bx = B0y and the height isH0, a

constant. In a tangent plane to a surface of

a sphere, the coordinatex is in the azimuthal

direction, they coordinate points to the south

andz is the vertical (Vallis, 2006), see figure

7.13.

The shallow water equations in this context are
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linearised to

∂ux

∂t
− fuy =

B0

ρµ0
by +

B0

ρµ0
y
∂bx
∂x

− g
∂h

∂x
, (7.50a)

∂uy

∂t
+ fux =

B0

ρµ0
y
∂by
∂x

− g
∂h

∂y
, (7.50b)

∂h

∂t
+H0

(∂ux

∂x
+

∂uy

∂y

)

= 0, (7.50c)

∂bx
∂t

= −B0uy +B0y
∂ux

∂x
, (7.50d)

∂by
∂t

= B0y
∂uy

∂x
, (7.50e)

wheref = f(y) is the Coriolis parameter. Differentiating (7.50a) and (7.50b) with

respect tot, we have

∂2ux

∂t2
− f

∂uy

∂t
=

B0

ρµ0

∂by
∂t

+
B0

ρµ0

y
∂2bx
∂x∂t

− g
∂2h

∂x∂t
, (7.51)

∂2uy

∂t2
+ f

∂ux

∂t
=

B0

ρµ0
y
∂2by
∂x∂t

− g
∂2h

∂y∂t
. (7.52)

Substituting∂bx
∂t

, ∂by
∂t

and ∂h
∂t

into equations (7.51) and (7.52)

∂2ux

∂t2
− f

∂uy

∂t
= (C2

0 + v2Ay
2)
∂2ux

∂x2
+ C2

0

∂2uy

∂x∂y
, (7.53)

∂2uy

∂t2
+ f

∂ux

∂t
= v2Ay

2∂
2uy

∂x2
+ C2

0

∂2ux

∂x∂y
+ C2

0

∂2uy

∂y2
, (7.54)

wherev2A = B2
0/ρµ0 is the Alfvén speed andC2

0 = gH0 is the velocity of the gravity

waves. We perform a Fourier analysis in the form:ei(kxx−ωt), then the equations become

(k2
xC

2
0 + k2

xv
2
Ay

2 − ω2)ux + ifωuy − ikxC
2
0

duy

dy
= 0, (7.55)

ifωux + (ω2 − k2
xv

2
Ay

2)uy + ikxC
2
0

dux

dy
+ C2

0

d2uy

dy2
= 0. (7.56)

From equation (7.55)

ux =
i

(k2
xC

2
0 + k2

xv
2
Ay

2 − ω2)

[

kxC
2
0

duy

dy
− fωuy

]

. (7.57)
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In this case, we use theβ-plane approximation for the Coriolis parameter, wheref =

f0 + βy, whereβ = 2Ω0/R0 cosΘ0 andf0 = 2Ω0 sin Θ0 (Vallis, 2006). We differentiate

the equation (7.55), then

dux

dy
=

1

(k2
xC

2
0 + k2

xv
2
Ay

2 − ω2)

[

ikxC
2
0

d2uy

dy2
− iβωuy − if0ω

duy

dy
− 2k2

xv
2
Ayux

]

. (7.58)

Next, we substituteux and its derivative into the equation (7.56)

(k2xv
2

Ay
2 − ω2)

d2uy

dy2
+

2k4xC
2
0v

2

A

(k2xC
2

0
+ k2xv

2

Ay
2 − ω2)

y
duy

dy

+
{

kxβω +
(f0 + βy)2ω2

C2
0

− (k2xC
2

0
+ k2xv

2

Ay
2 − ω2)

C2
0

(k2xv
2

Ay
2 − ω2)− 2k3xv

2

Aω(f0 + βy)y

(k2xC
2
0
+ k2xv

2

Ay
2 − ω2)

}

uy = 0.

(7.59)

The following part of this section moves on to describe some approximations to the

solution of the above equation. Also it could be demonstrated that some complex fast

magnetic Rossby mode are present in the system.

Limit when v2A ≪ C2
0

In the case where the magnetic field is weak and we consider waves away from the

equator (βy ≪ f0), equation (7.59) simplifies to

−ω2d
2uy

dy2
+
{

kxβω + k2
xω

2 − ω4

C2
0

+
f 2
0ω

2

C2
0

}

uy = 0. (7.60)

We propose solutions of the formuy ∼ eikyy, hence

ω3 −
[

f 2
0 + C2

0 (k
2
x + k2

y)
]

ω − βkxC
2
0 = 0. (7.61)

For large frequencies, the last term in the equation (7.61) is neglected, and the solutions

are the Poincaré-inertia gravity waves as in Zaqarashviliet al. (2007)

ω2 = f 2
0 + C2

0(k
2
x + k2

y). (7.62)
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For small frequencies the first term of the equation (7.61) isignored. In this case the

solutions correspond to fast magnetic Rossby waves

ω = − kxβ

k2
x + k2

y +
(

f0
C0

)2 . (7.63)

Low frequency limit

When the magnetic field is weakvA ≪ 1, and the frequencies are lowω2 ≪ 1, then

the factork2
xC

2
0 + k2

xv
2
Ay

2 − ω2 → k2
xC

2
0 . Substituting this approximation into (7.59) the

expression reduces to

(k2
xv

2
Ay

2 − ω2)
d2uy

dy2
+ 2k2

xv
2
Ay

duy

dy

+
{(f0 + βy)2ω2

C2
0

+ βkxω − −2kxv
2
A(f0 + βy)ω

C2
0

y − k2
x(k

2
xv

2
Ay

2 − ω2)
}

uy = 0.(7.64)

The frequencies for slow magnetic Rossby waves are expectedto be

ω =
kxv

2
A

β
ω̂, (7.65)

whereω̂ ∼ O(1). Now assumev2A/β
2 ≪ 1 and(f0 + βy)2 ∼ k2

xC
2
0 , to get

y2
d2uy

dy2
+ 2y

duy

dy
+
{

ω̂ − k2
xy

2
}

uy = 0. (7.66)

Substitutinguy = uy−1/2 the differential equation is now the modified Bessel equation

y2
d2u

dŷ2
+ 2y

du

dy
−
{

k2
xy

2 +
(1

4
− ω̂

)

}

uy = 0. (7.67)

with solutions

uy = A
Iν(kxy)

y1/2
+B

Kν(kxy)

y1/2
, (7.68)

whereν is an integer number for defined solutions andν2 = 1/4 − ω̂. The frequencies

of the waves are given by

ω =
kxv

2
A

β

(1

4
− ν2

)

. (7.69)
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These are not wave like solutions, diverge wheny → ∞. The equation (7.64) is valid

providedy is large compared to the very smallω̂2v2A/β
2. These findings cannot be

extrapolated to values ofy, close to the equator there is a different equation to solve.

Low frequency limit: near the equator

A new scaling is used for the case when the waves are equatorially trapped

y =
ω̂vA
β

ŷ. (7.70)

Also ω̂2v2A/β
2 ≪ 1 theny → 0. Then the differential equation becomes

(1− ŷ2)
∂2uy

∂ŷ2
− 2ŷ

∂uy

∂ŷ
− ω̂2uy = 0. (7.71)

This is the Legendre differential equation with solutionsuy = Pn(ŷ) and frequencies

equal to

ω = −kxv
2
A

β
n(n+ 1). (7.72)

This solution corresponds to magnetic Rossby waves travelling westward and is valid

in the limit y ∼ 0 but diverges for other values ofy. This conclusion proves that slow

magnetic Rossby waves are not present in the system. Zaqarashvili et al. (2015) have

mentioned that slow magnetic Rossby waves could explain theRieger-type periodicity

in the solar tachocline for a toroidal magnetic fieldBφ = B0 sin θ cos θ. However,

our results have demonstrated that the slow magnetic Rossbywaves are absent for this

field configuration. To get valid wave-like solutions for slow magnetic Rossby waves,

additional physics, such as magnetic or vicous diffusion isrequired. The analysis sheds

light on why it was not possible to find slow magnetic Rossby waves in a diffusion-less

model withBφ = B0 cos θ sin θ.
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7.3.2 The Axisymmetric Case,m = 0

In the case of a symmetric magnetic field analysed in chapters2-6, whenm = 0 the

system of equations reduces to the axisymmetric case for thenon-magnetic problem,

which has been solved and extensively studied by Longuet-Higgins (1968). In contrast,

the presence of an antisymmetric magnetic fieldBφ = B0 cos θ sin θ leads to a new case

whenm = 0, which is the interest of this section.

The system of equations (7.3a)-(7.3e) form = 0 is

λũθ + µũφ + (1− µ2)
dη

dµ
− 2α2µ2b̃φ = 0, (7.73a)

λũφ + µũθ + α2(1− 3µ2)b̃θ = 0, (7.73b)

ǫλη − dũθ

dµ
= 0, (7.73c)

λb̃θ = 0, (7.73d)

λb̃φ − (1− µ2)ũθ = 0. (7.73e)

In the axisymmetric case, the northward component of the magnetic field is zero.

Substituting (7.73d) and (7.73e) into the first three equations, we have

[λ2 − 2α2µ2(1− µ2)]ũθ + λµũφ + λ(1− µ2)
dη

dµ
= 0, (7.74)

λũφ = −µũθ, (7.75)

ǫλη − dũθ

dµ
= 0. (7.76)

Substituting̃uφ into equation (7.74), we obtain

[λ2 − 2α2µ2(1− µ2)− µ2]ũθ + λ(1− µ2)
dη

dµ
= 0. (7.77)

Differentiating this expression, we have

λ(1− µ2)
d2η

dµ2
− 2λµ

dη

dµ
+ [λ2 − 2α2µ2(1− µ2)− µ2]

dũθ

dµ

−2µ(1− 2α2µ2 + 2α2(1− µ2))ũθ = 0. (7.78)
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Substitutingũθ from equation (7.77) and its derivative (equation (7.76)) into (7.78), an

equation for the scaled height,η is

(1− µ2)
d2η

dµ2
+
{ [λ2 − 1− 2α2(1− µ2)2]

[λ2 − µ2 − 2α2µ2(1− µ2)]

}

µ
dη

dµ

+ǫ[λ2 − µ2 − 2α2µ2(1− µ2)]η = 0. (7.79)

This second order differential equation will be solved in the case whereǫ is small.

Small ǫ regime

In the case whenǫ is small, the gravity waves have large frequencies, and the equation

(7.79) reduces to

(1− µ2)
d2η

dµ2
− 2µ

dη

dµ
+ ǫλ2η = 0, (7.80)

which is the Legendre differential equation with solutions

η = Pn(µ), and λ = ±
√

n(n + 1)

ǫ
. (7.81)

These are the gravity modes, found by Longuet-Higgins (1968), wherePn are the

Legendre polynomials.

Large ǫ regime

When ǫ is large, the numerical results for the non-axisymmetric case show that some

waves are equatorially trapped, thenµ → 0. Therefore the terms1− µ2 ∼ 1 andµ4 ∼ 0.

Hence the equation (7.79) becomes

d2ũθ

dµ2
+ ǫ[λ2 − (1 + 2α2)µ2]ũθ = 0. (7.82)

Let us define a new scale:χ = (1+2α2)1/4ǫ1/4µ. In this scaling the differential equation

is
d2ũθ

dχ2
+
[ ǫ1/2λ2

(1 + 2α2)1/2
− χ2

]

ũθ = 0. (7.83)
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This is the parabolic cylinder differential equation, withsolutions

ũθ = Ce−
1

2
(1+2α2)1/2ǫ1/2µ2

Hν((1 + 2α2)1/4ǫ1/4µ) (7.84)

for ν = 0, 1, 2, ... andHν are the Hermite polynomials. The dispersion relation for these

set of solutions is

λ = ±(2ν + 1)1/2
(2α2 + 1)1/4

ǫ1/4
. (7.85)

These are gravity waves with positive and negative frequencies. In this approximation

there is no difference between positive or negative frequencies. We note that ifα is equal

zero the frequencyλ tends to the first order approximation for the frequency of gravity

waves in the hydrodynamic case (equation (3.33)). The effect of the magnetic field is to

increase the frequency of the waves and enhance the equatorial trapping.

7.3.3 Kelvin Wave

One important feature of a Kelvin wave is that the flow is constrained to travel towards the

east or west, and the northward velocity becomes zero when weincrease the parameters

α or ǫ. Using the fact that̃uθ → 0, the system of equations (7.3a)-(7.3e) simplifies to

µũφ + (1− µ2)
dη

dµ
− 2α2µ2b̃φ = 0, (7.86a)

λũφ −mη +mα2µb̃φ = 0, (7.86b)

ǫλ(1 − µ2)η −mũφ = 0, (7.86c)

b̃θ = 0, (7.86d)

λb̃φ = −mµũφ. (7.86e)

Substituting̃bφ into the equations (7.86a) and (7.86b), we obtain

(λ+ 2mα2µ2)µũφ + λ(1− µ2)
dη

dµ
= 0, (7.87)

(λ2 −m2α2µ2)ũφ −mλη = 0, (7.88)
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ǫλ(1− µ2)η −mũφ = 0. (7.89)

The equations (7.87) and (7.89) lead to a first order differential equation

m
dη

dµ
+ ǫ(λ + 2mα2µ2)µη = 0. (7.90)

The solution is obtained by simple integration

η = e−
ǫ

2m
µ2(λ+mα2µ2). (7.91)

This wave is trapped at the equator for largeǫ or α as it is expected, and the dispersion

relation is approximately

λ ∼ ± m√
ǫ
,

which is the same expression found by Longuet-Higgins (1968). However, a negative

frequency is still possible if the factor
√
ǫα2µ2 ≥ 1. There is a possibility that a negative

Kelvin wave is present.

7.4 Summary

The numerical results and theory reported here appear to support the assumption that

the waves arising by the antisymmetric magnetic field are classified in four types: MIG

waves, a Kelvin mode, fast magnetic Rossby waves and an anomalous slow mode. In the

small α regime the MIG waves behave as expected from the Longuet-Higgins (1968)

paper and the fast magnetic Rossby modes also follow the Rossby wave formula of

Longuet-Higgins (1968).

To summarise, the oscillations have the same featuresto the properties of the waves arise

by the symmetric field problem in chapter 4 except forthe onset of instabilityis not

α = 0.5. Now the value ofα which separates the regimes is in the interval of]0.1, 1].
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According to Zaqarashvili et al. (2009), the solution for this MHD shallow water model

with the toroidal fieldBφ = B0 sin θ cos θ, in the limit of smallα andǫ, includes two sets

of waves: magnetic Poincaré waves (surface gravity waves)and magnetic Rossby waves

(fast and slow). They found a sequence of fast magnetic Rossby waves but a single slow

modeλ ≈ mα2 travelling to the east. However, their formula for the eigenfunctionsũθ

is singular atµ = α, so their solutions suffer from the same problems that in thelow

frequency limit in section 7.3.1. An important fact is that in our results there is one single

mode travelling westward for slow magnetic Rossby waves, not a sequence of modes

depending on a wave number.

In the other limit (ǫ ≫ 1 butα2 ≪ 1), they found equatorially trapped waves for large

ǫ and moderateα and mentioned the Poincaré waves and fast and slow magneticRossby

waves. This discrepancy could be attributed to the fact thatin the context of moderate or

largeα, the slow magnetic Rossby solution does not satisfy the condition
√
ǫα2 ≪ 1.

There are a number of similarities between their results andours. MIG waves are

equatorially trapped for largeα andǫ and fast magnetic Rossby waves are confined at

the equator whenǫ is large andα has a moderate value. On the other hand, the slow

magnetic Rossby waves are not equatorially trapped for any value ofα andǫ.

Whenα is large the magnetic Rossby waves are unstable and the MIG waves could be

absorbed by a possible critical layer.
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Chapter 8

Conclusions

In the present research, the aim was to study solutions for the MHD shallow water system

of equations with a basic state of a toroidal magnetic field inthe formBφ = B0 sin θ for

chapters 4, 5 and 6, and the antisymmetric formBφ = B0 sin θ cos θ in chapter 7. We

suppose that the basic state height is maintained to be constant (H0) by an external stress.

The solutions are evaluated in a whole range for the parameters ǫ = 4Ω2
0R

2
0/gH0 and

α2 = B2
0/ρµ04Ω

2
0R

2
0, in order to apply the results to geophysical and astrophysical

context. The numerical method was based on the Longuet-Higgins (1968) paper and

analytical solutions were developed for limiting cases.

These cases is not a realistic representation of the complicated scenario in planets and

stars, where the magnetic field has a complicated configurations and zonal flows. Also,

the thermal wind shears may be important and isosurfaces of pressure may not be

spherical. To keep the model treatable this study did not include diffusion or differential

rotation. The diffusion may be particularly important whenthe model is applied to the

stably stratified layer of the Earth’s core. The absence of differential rotation in the

problem limits the interpretation of solutions that can be related to the solar tachocline or

other stars. But the simpler the mathematical model the moreaccurate it is likely to be.
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Symmetric Magnetic Field: Bφ = B0 sin θ

The solutions can be classify in four types: MIG waves travelling eastward and westward,

fast magnetic Rossby waves travel to the west, slow magneticRossby waves propagating

eastward with an anomalous mode travels to the west and an exceptional solution which

exists for largeǫ: the Kelvin wave travels to the east, though in the presence of an intense

magnetic field there is a Kelvin mode travelling westward.

The solutions are presented as a discrete set of antisymmetric and symmetric oscillations

depending of the poloidal and azimuthal wave numbers, except in the case of the Kelvin

wave which is a single mode.

Magneto Inertial Gravity Waves

The Magneto Inertial Gravity (MIG) waves propagates eastward and westward. The

normalized frequency remains superalfvénic|λ| > mα and the modes are alwaysstable.

There are no instabilities for these modes.

• Small α regime: The normalized frequencyλ is proportional toǫ−1/2 for small

values of ǫ and the eigenfunctions are the Associated Legendre polynomials

Pm
n (µ). Whenǫ is largeλ ∼ ǫ−1/4 , here MIG waves are equatorially trapped

and the eigenfunctions correspond to the parabolic cylinder functions

ũθ = Ce−
1

2
ǫ1/2µ2

Hν(ǫ
1/4µ),

whereHν are the Hermite polynomials.

• Large α regime: When α is large the behaviour of these waves is controlled

mainly by the magnetic field and|λ| tends to the Alfvén frequencymα+ δ, where

the small deviationδ depends onα1/3ǫ−1/3. These waves areequatorially trapped

for large ǫ and/orα and the asymptotic form of the equation for the northward
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velocity has a set of solutions corresponding to parabolic cylinder functions

ũθ = e−
1

4
s2µ2

Hν(
sµ√
2
).

Kelvin Wave

The first mode of MIG waves travelling to the east becomes a Kelvin wave whenα andǫ

are increased. The northward velocity goes to zero and the flow reduces to being purely

in the azimuthal direction.

• The frequency for the Kelvin wave goesλ ∼ α + 1/(2ǫα2). These waves are

equatorially trapped with eigenfunctions

ũφ = e−
qµ2

2 .

• If the magnetic field is strong enough for a given value ofǫ, there is a Kelvin mode

travelling to the west which is also trapped at the equator, and exists owing to the

magnetic field.

Magnetic Rossby Waves: Small α regime

• The fast magnetic Rossby waves propagate westward and the discrete set of

frequencies are in the superalfénic regime (|λ| > mα). There is almost no effect

of the magnetic field, the frequencyλ is independent ofǫ as for the hydrodynamic

Rossby waves, forǫ is small, and the eigenfunctions correspond to the Associated

Legendre polynomials.

• For ǫ large the magnetic mixed Rossby gravity mode (n = 1) tends toλ ∼ ǫ−1/4.

Then the other modes behave likeλ ∼ ǫ−1/2 . The eigenfunctions corresponds to

the parabolic cylinder functions and the waves areequatorially trapped for large

values ofǫ and moderate values ofα.
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• The slow magnetic Rossby waves are produced via a balance between the magnetic

field and the Coriolis force: whenα = 0 these modes are absent. The waves

are a set of discrete very small subalfvénic frequencies which tends toλ ∼ α2

in the smallα regime with eigenfunctions defined by the Associated Legendre

polynomials. This result is very sensitive to the magnitudeof the magnetic field,

whereas the other waves are just slightly affected by the magnetic field, in the weak

field regime. These oscillations arenot equatorially trapped. On the contrary, for

some values ofm the waves can beconfined at the poleseven whenα is not large.

• One anomalous slow wave travels to the west which corresponds to a sinusoidal

oscillation with a dispersion relation ofλ = −0.2ǫα4 for m = 1.

Magnetic Rossby Waves:Large α regime.

• For sufficiency large magnetic field (α > 0.5) andm = 1, the waves enter in a

new regime, fast magnetic Rossby waves become subalfvénicand the first mode

n = 1, the magnetic mixed Rossby gravity mode collides with the anomalous slow

magnetic Rossby mode and becomes complex. The second mode collides with the

n = 2 slow magnetic Rossby wave, and so on.

• Near the transition point (α ∼ 0.5), the fast magnetic Rossby eigenfunctions

correspond to the associated Legendre polynomialsũθ = Pm
n (µ). In this region,

the frequency is calculated byλ = −m/2+ δ̂(α, n,m) with a high accuracy where

δ̂ ≪ 1.

• Asα or ǫ increases, the complex frequency tends toλ = −1/2+ i(α−1/
√
2ǫ) and

the eigenfunctions arẽuθ ∼ (1 − µ)1/2e−
√
2ǫα(1−µ)Ln′ whereLn′ are the Laguerre

polynomials. In addition, the modes undergopolar trapping in this regime and

angular momentum is transferred toward the poles.
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• This is a current driven instability that has previously been studied by Tayler (1973,

1980), Pitts and Tayler (1985) for stars containing a toroidal field and Malkus

(1967) and others in the geophysical context. Also in stars and planets the presence

of the differential rotation may lead to joint instabilities (Gilman and Fox, 1997),

but field strengthsat onsetare lower for those joint instabilities than those in current

driven instabilities. In addition, the configuration of thebasic state of the magnetic

field determines the stability of the field.

• The frequencies of the magnetic Rossby modes form 6= 1 are real and have the

same behaviour as them = 1 case whenα is small. These waves are alwaysstable.

In the case ofα large, the frequency tends to be linear withα: however, for the case

m = 2, the eigenvalues satisfy the equationλ = −1/2±2[(n+1)α]1/2ǫ−1/4 and the

eigenfunctions follows̃uθ ∼ (1 − µ)e−2
√
ǫα(1−µ)L1

n. Lastly, the magnetic Rossby

waves form ≥ 3 has frequenciesλ ∼ ±α
√

m(m− 2) and the eigenfunctions are

ũθ ∼ (1 − µ)m/2e−2
√
2mǫα(1−µ)Lm−1

n . All cases correspond to wavestrapped at

the poles, and the formulas can describe the eigenfunctions and eigenvalues with

high accuracy.

Antisymmetric magnetic field: Bφ = B0 sin θ cos θ

In this case, when the basic state is an antisymmetric field,the north and south hemisphere

will have the opposite polarity, and the field at the equator will be zero. This will lead to

many consequences for the waves that are arising in this context.

Since the problem is now more difficult to solve, we approximate some solutions and

make some comparison with the analogous Cartesian problem to have an idea about what

waves we can find.

We found three kinds of oscillations: MIG waves travelling eastward and westward, fast

magnetic Rossby waves propagating to the west and one anomalous mode that travels to
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the west. We stress that the set of slow magnetic Rossby wavespropagating eastward are

absent in this field configuration.

Small α regime

• The behaviour of MIG and fast magnetic Rossby waves remains similar to the

symmetric case. The main change here is that the instabilityvalue ofα has changed

to lie in an interval∼]0.1, 1], and we note that the instability can start beforeα =

0.5.

• From the numerical calculations, we note that there is an anomalous mode

travelling to the west, with a frequency estimated to beλ = −4
√
2/100ǫα4.

Large α regime

• The numerical evidence shows that the MIG waves become subalfvénic for certain

value orα which depend onǫ, exactly when the frequency tends to be similar to

the frequency of a hydrodynamic gravity wave. After this critical point the waves

disappear. A likely explanation of the suppression of MIG waves is related to

the existence of a critical layer which absorbs the waves. Also MIG waves are

equatorially trapped for largeα or ǫ.

• The fast magnetic Rossby waves start to become subalfvénicwhenα increases. We

did not define exactly where the instability point lies here.But the fast magnetic

Rossby waves coalesce with each other in a small range ofα and then become real

again and later collides with a different mode and become complex again, and so

on, weaving a net where instability appears and disappears.The first fast magnetic

Rossby wave coalesces with the anomalous slow magnetic Rossby wave.
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• Analytically we found a Kelvin wave travelling eastward which is equatorially

trapped and the frequency depends on the rotation:λ ∼ ǫ−1/2, similar to the

symmetric problem.

• Also, the axisymmetric case (m = 0) was solved analytically and the result

shows gravity waves in the limit of smallǫ with positive and negative frequencies.

For largeǫ these waves are equatorially trapped and large values ofα enhanced

the equatorial trapping. In the symmetric case, the problemreduces to the

hydrodynamic case form = 0 and was solved by Longuet-Higgins (1968). He

found a set of gravity waves depending on the poloidal wave number n with

positive frequencies.

This section has reviewed the key aspects of the waves that are solutions of the proposed

problem. The following part of the conclusions moves on to describe in greater detail the

possible applications for these results in the geophysicaland astrophysical context.

Implications

The Stably Stratified Layer at the Earth’s Core

Considering the existence of a stably stratified layer at theCMB, we can use the values

of the parameters calculated in the introduction of this work (table 1.1) to obtain the

solutions for the MHD shallow water equations for a toroidalfield B0 sin θ. Then, we

have four kinds of waves: the MIG waves, fast and slow magnetic Rossby waves and the

Kelvin wave. We will present some first modes, forα = 4×10−4 (B ∼ 0.02T ), ǫ = 0.08,

m = 1, andN = 50. None of the waves are trapped at the equator and instabilityis not

possible with this value ofα.

• For these values, the numerical calculation for highest frequencies corresponding

to MIG waves have a maximum period of2.8 days for the first mode,1.6 days
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for the second one and the following oscillations with decreasing frequencies. The

electromagnetic effect of MIG modes can not reach the surface of the Earth because

the screening of the mantle.

• The fast magnetic Rossby waves have periods from27 days to1.55 years for the

westward propagating waves. Due to the screening of the mantle these waves have

little chance of reaching the Earth’s surface. In observational studies, Jackson and

Finlay (2007) show some flux spots traveling westwards on thesurface of Earth’s

core with a period hundreds of years (100 ∼ 1000 years) and wavenumbers (m = 8

andn = 11) which are confined in the equatorial region. These results suggest that

fast magnetic Rossby waves could not be related to this kind of secular variation

for these values of the parameters.

• In the case of the lowest frequencies which are capable to travel through the mantle

with periods from2135 (n = 2), 854 (n = 3), 474 (n = 4), 305 (n = 5), 213

(n = 6),... years and travels to the east (m = 1). It could be possible that the

measurements of the geomagnetic field can reveal some features similar to these

oscillations.

• The anomalous mode propagates to the east and has a long period of∼ 1012 years,

even greater than the age of the Earth4.5× 109 years. In this context the presence

of this wave has no physical meaning.

If we takeǫ = 2.7 from table 1.1, the results will change but with the same conclusions.

The MIG waves will have periods of few hours, the periods of fast modes will be around

1 day to several days and the slow magnetic Rossby wave periodswill not change, as the

formula does not depend onǫ.

If the magnetic field in this stratified layer is weaker:α = 1.7× 10−6, (B ∼ 10−4T ), the

slow magnetic Rossby modes could have periods of millions ofyears.

These results must be approached with some caution in geomagnetic problems. It would
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be a better approximation if a more realistic basic state magnetic field with a radial

component were used, but this work provides important insights into the properties of

the MHD waves. The difficulty with including a radial magnetic field is that waves can

travel along field lines and hence out of the shallow layer. This would possibly drain wave

energy out of the stable layer. This means that a more complicated problem in which the

stable shallow layer is coupled to the deep interior of the outer core would have to be

studied.

The Solar Tachocline

The present study raises the possibility that these oscillations can be produced in the solar

tachocline and could affect the “magnetic weather” called solar activity (Spiegel, 1994).

A possible estimation for the parameters isα = 0.2 andǫ = 0.04. Our numerical results,

for m = 1 andN = 50, can give us a good illustration of possible oscillations arising

in this layer. It is important to note that the waves are manifested as a single mode of

oscillation or sometimes as a superposition of waves.

• The highest frequencies corresponding to MIG waves travelling eastward or

westward could have approximated periods of2.1 days for the first mode,1.1 days

for the second,18.7 hours for the third one and so on. These results are comparable

with some gravity waves (g-modes) produced below the convection zone.

• The fast magnetic Rossby waves should have frequencies from26 days for the first

mode of a sequence of modes, to∼ 67 days. Even thoughα has a moderate value

the waves are not equatorially trapped in this case (for the configurationB0 sin θ).

• The anomalous slow magnetic Rossby mode should have a periodof ∼ 2885 years.

• The slow magnetic Rossby waves are a set of oscillations where the first mode

could have a period around136 days, the next modes decrease in period to the value
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of ∼ 92 days. It is important to bear in mind the uncertainty of theseresponses.

Lobzin et al. (2012) has found 156 days periodicities in the occurrence rate of

coronal type III solar radio burst in a similar time scale than these waves.

If we takeǫ = 0.03 from table 1.1, the periods for the waves will remain similar.

Observations in solar magnetic activity (McIntosh et al., 2017) have revealed patterns

travelling westward with phase speeds of3.25±2.25m/s and2.65±1.60m/s in the north

and south hemispheres and eastward group speeds of24.4 ± 15.3m/s in the southern

hemisphere and23.8 ± 20.8m/s in the northern hemisphere. They believe that this is a

kind of slow magnetic Rossby wave travelling to the east (west for the context of solar

observations) due to the rotation and the toroidal magneticfield of the tachocline. We

could infer using the dispersion relation for these modes for a weak field (equation 2.72)

and some simple formulas of movement in a circle

vph =
2πR0

mT
, and λ =

ω

2Ω0
=

π

TΩ0
,

a relation between the magnetic parameter and the phase velocity of these waves

α2 =
vph

2Ω0R0[n(n + 1)− 2]

for a given poloidal wave number,n. Then, our calculations suggest that the value ofα

could be around1.1×10−2 (n = 3) to 2.8×10−3 (n = 12). Hence our estimations of the

solar magnetic field for the tachocline could be around0.5T ∼ 0.1T (∼ 103G). However,

these magnetic Rossby waves have the feature of that the phase speed and group speed

in the azimuthal direction are the same, as shown in section 2.6.1. This fact does not fit

with the observations, maybe due to that this model is very simple and does not take into

account differential rotation.

Due to the uncertainty of the values forα in the solar tachocline, we cannot provide a

good estimation for the periods for the slow magnetic Rossbywaves. In the case of a

weak field:α = 2.32 × 10−3, the slow magnetic Rossby waves could have periods of



Chapter 8. Conclusions 225

1713, 685, 380, 245, 171,... years, forn = 1, 2, 3, 4, 5,.... Zaqarashvili et al. (2015) has

obtained similar results and has associated these waves with Rieger type periodicities.

However, the fast magnetic Rossby waves and MIG waves maintain their frequencies in

almost with the same value ifα varies from∼ 10−3 to∼ 10−1, as it is shown in the tables

of chapter 4.

According to these data, we can infer that the magnetic field in the tachocline could be

weak∼ 0.1T (103G), in order to have slow waves with periods of decades.

Oláh et al. (2009) have studied the magnetic activity of 15 solar-type stars (G-K) with

rotation rates from∼ 0.02 to ∼ 0.95 times the rotation rate of the Sun. They found

multiples cycles in the stars with lengths from∼ 2.5 to ∼ 14 years but not in this order.

Even though the authors suggested that these periodicitiesare due to a dynamo (Gilman,

1969), it is possible that slow magnetic Rossby waves could be associated with the cycles.

Considering some appropriated values of the parametersα andǫ for these stars similar

to the Sun, the slow oscillations can have periods of years. Although, we have to be

cautious for the direct application of our results to stars,as Pitts and Tayler (1985) had

stated in similar research that the results “obtained are suggestive rather than rigorous”.

The antisymmetric field configuration presents similar values for the perodicities. There

is no significant differences from the symmetric case in thisrange of values for the

parametersα andǫ, neither in the solar tachocline nor the Earth’s core stratified layer.

Future Work

More research is needed to better understand the solutions for the antisymmetric problem

Bφ = B0 sin θ cos θ, particularly for large values of the magnetic parameterα. The

critical layer could be more studied and the windows of instability for magnetic Rossby

waves have to be described in detail. Introducing diffusionmight be helpful here.

Also, the analysis could include diffusion or differentialrotation in order to estimate the
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effect of it on the behaviour of the waves, and in this form tryto reproduce with accuracy

the conditions of the stratified layers present in the nature.

Final Considerations

This research makes several noteworthy contributions to the study of MHD waves in

rotating fluids and provides evidence with respect to new modes which are excited in

the system. Despite the limitations of the model, this studyoffers a deep insight into

the dynamics of the waves and how the rotation and the magnetic field affect them. We

expect that this systematic investigation can complement the earlier studies.



227

Bibliography

A. Aasen and K. Varholm. Traveling gravity water waves with critical layers.Journal of

Mathematical Fluid Mechanics, pages 1–27, 2016.

M. Abramowitz and I. A. Stegun.Handbook of mathematical functions: with formulas,

graphs, and mathematical tables, volume 55. Courier Corporation, 1964.

I. Arregui and J. L. Ballester. Damping mechanisms for oscillations in solar prominences.

Space Science Reviews, 158(2-4):169–204, 2011.

M. I. Bergman. Magnetic Rossby waves in a stably stratified layer near the surface of the

earth’s outer core.Geophysical & Astrophysical Fluid Dynamics, 68(1-4):151–176,

1993.

S. I. Braginsky. Magnetic Rossby waves in the stratified ocean of the core, and

topographic core-mantle coupling.Earth, Planets and Space, 50(8):641–649, 1998.

O. Bühler.Waves and mean flows. Cambridge University Press, 2014.

P. S. Cally. Three-dimensional magneto-shear instabilities in the solar tachocline.

Monthly Notices of the Royal Astronomical Society, 339:957–972, March 2003.

P. S. Cally, M. Dikpati, and P. A. Gilman. Three-dimensionalmagneto-shear instabilities

in the solar tachocline - ii. Axisymmetric case.Monthly Notices of the Royal

Astronomical Society, 391:891–900, December 2008.



228 BIBLIOGRAPHY

S. Chandrasekhar.Hydrodynamic and hydromagnetic stability. Courier Corporation,

2013.

P. Charbonneau, J. Christensen-Dalsgaard, R. Henning, R. M. Larsen, J. Schou, M. J

Thompson, and S. Tomczyk. Helioseismic constraints on the structure of the solar

tachocline.The Astrophysical Journal, 527(1):445, 1999.

B. Cushman-Roisin and J. Beckers.Introduction to geophysical fluid dynamics: Physical

and numerical aspects, volume 101. Academic Press, 2011.

M. Dikpati and P. A. Gilman. Prolateness of the solar tachocline inferred from latitudinal

force balance in a magnetohydrodynamic shallow-water model. The Astrophysical

Journal, 552:348–353, May 2001.

M. Dikpati, P. A. Gilman, and M. Rempel. Stability analysis of tachocline latitudinal

differential rotation and coexisting toroidal band using ashallow-water model.The

Astrophysical Journal, 596(1):680, 2003.

A. M. Dziewonski and D. L. Anderson. Preliminary reference earth model.Physics of

the Earth and Planetary Interiors, 25(4):297–356, 1981.

C. C. Finlay, M. Dumberry, A. Chulliat, and M. A. Pais. Short timescale core dynamics:

Theory and observations.Space Science Reviews, 155(1-4):177–218, 2010.

C. M. Fowler. The solid earth: An introduction to global geophysics. Cambridge

University Press, 1990.

T. Gastine, J. Wicht, and J. M. Aurnou. Zonal flow regimes in rotating anelastic spherical

shells: An application to giant planets.Icarus, 225(1):156–172, 2013.

A. E. Gill. Atmosphere-ocean dynamics, volume 30. Academic Press, 1982.

P. A. Gilman. A Rossby-wave dynamo for the sun, I.Solar Physics, 8(2):316–330, 1969.



BIBLIOGRAPHY 229

P. A. Gilman. Magnetohydrodynamic shallow water equationsfor the solar tachocline.

The Astrophysical Journal Letters, 544(1):L79, 2000.

P. A. Gilman and M. Dikpati. Analysis of instability of latitudinal differential rotation

and toroidal field in the solar tachocline using a magnetohydrodynamic shallow-water

model. i. Instability for broad toroidal field profiles.The Astrophysical Journal, 576

(2):1031, 2002.

P. A. Gilman and P. A. Fox. Joint instability of latitudinal differential rotation and toroidal

magnetic fields below the solar convection zone.The Astrophysical Journal, 484(1):

439, 1997.

D. Gubbins and E. Herrero-Bervera. Encyclopedia of geomagnetism and

paleomagnetism. Springer Science & Business Media, 2007.

E. Hecht and A. Zajac. Optics.Addison-Wesley, Reading, Mass, 19872, 1974.

G. Helffrich and S. Kaneshima. Outer-core compositional stratification from observed

core wave speed profiles.Nature, 468(7325):807–810, 2010.

K. Heng and A. Spitkovsky. Magnetohydrodynamic shallow water waves: Linear

analysis.The Astrophysical Journal, 703(2):1819, 2009.

C. O Hines. Gravity waves in the atmosphere.Nature, 239:73–78, 1972.

R. Hollerbach and P. S. Cally. Nonlinear evolution of axisymmetric twisted flux tubes in

the solar tachocline.Solar Physics, 260:251–260, 2009.

J. R. Holton and R. S. Lindzen. A note on Kelvin waves in the atmosphere.Monthly

Weather Review, 96:385–386, 1968.

K. Hori, C. A Jones, and R. J Teed. Slow magnetic Rossby waves in the earth’s core.

Geophysical Research Letters, 42(16):6622–6629, 2015.



230 BIBLIOGRAPHY

D. W. Hughes, R. Rosner, and N. O. Weiss.The solar tachocline. Cambridge University

Press, 2007.

S. Hunter. An examination of keystroke dynamics for continuous user authentication.

PhD thesis, University of Leeds, 2015.

A. Jackson. Intense equatorial flux spots on the surface of the earth’s core.Nature, 424

(6950):760–763, 2003.

A. Jackson and C. C. Finlay. Geomagnetic secular variation and its applications to the

core.Treatise on Geophysics, 5:147–193, 2007.

C. A. Jones. Planetary magnetic fields and fluid dynamos.Annual Review of Fluid

Mechanics, 43:583–614, 2011.

S. Karato. The dynamic structure of the deep earth: An interdisciplinary approach.

Princeton University Press, 2003.

L. Kaufman. Some thoughts on the QZ algorithm for solving thegeneralized eigenvalue

problem.ACM Transactions on Mathematical Software (TOMS), 3(1):65–75, 1977.

G. N. Kiladis, M. C. Wheeler, P. T. Haertel, K. H. Straub, and P. E. Roundy. Convectively

coupled equatorial waves.Reviews of Geophysics, 47(2):1–42, 2009.

L. E. Kinsler, A. R. Frey, A. B. Coppens, and J. V. Sanders. Fundamentals of acoustics.

Fundamentals of Acoustics, 4th Edition, by Lawrence E. Kinsler, Austin R. Frey, Alan

B. Coppens, James V. Sanders, pp. 560. ISBN 0-471-84789-5. Wiley-VCH, December

1999., page 560, 1999.

J. Lighthill. Waves in fluids. Cambridge University Press, 2001.

V. V. Lobzin, I. H. Cairns, and P. A. Robinson. Rieger-type periodicity in the occurrence

of solar type III radio bursts.The Astrophysical Journal Letters, 754(2):L28, 2012.



BIBLIOGRAPHY 231

M. S. Longuet-Higgins. The eigenfunctions of Laplace’s tidal equations over a sphere.

Philosophical Transactions of the Royal Society of London A: Mathematical, Physical

and Engineering Sciences, 262(1132):511–607, 1968.

L. H. Ma. Gleissberg cycle of solar activity over the last 7000years.New Astronomy, 14

(1):1–3, 2009.

J. Mak, S. D. Griffiths, and D. W. Hughes. Shear flow instabilities in shallow-water

magnetohydrodynamics.Journal of Fluid Mechanics, 788:767–796, 2016.

W. Malkus. Hydromagnetic planetary waves.Journal of Fluid Mechanics, 28(04):793–

802, 1967.

S. A. Maslowe. Critical layers in shear flows.Annual review of fluid mechanics, 18(1):

405–432, 1986.

T. Matsuno. Quasi-geostrophic motions in the equatorial area.J. Meteor. Soc. Japan, 44

(1):25–43, 1966.

S. W. McIntosh, W. J. Cramer, M. Pichardo, and R. J. Leamon. The detection of Rossby-

Like waves on the Sun.Nature Astronomy, 2017.

P. Melchior.The physics of the earth’s core: An introduction. Elsevier, 2013.

M. S. Miesch. Large-scale dynamics of the convection zone and tachocline. Living

Reviews in Solar Physics, 2(1):1–139, 2005.

M. S. Miesch and B. W. Hindman. Gyroscopic pumping in the solar near-surface shear

layer. The Astrophysical Journal, 743(1):79, 2011.

C. B. Moler and G. W. Stewart. An algorithm for generalized matrix eigenvalue problems.

SIAM Journal on Numerical Analysis, 10(2):241–256, 1973.

C. J. Nappo.An introduction to atmospheric gravity waves. Academic Press, 2013.



232 BIBLIOGRAPHY
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