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Abstract 

Background:  Malaria has historically been entrenched in indigenous populations of the República de Panamá. This 
scenario occurs despite the fact that successful methods for malaria elimination were developed during the creation 
of the Panamá Canal. Today, most malaria cases in the República de Panamá affect the Gunas, an indigenous group, 
which mainly live in autonomous regions of eastern Panamá. Over recent decades several malaria outbreaks have 
affected the Gunas, and one hypothesis is that such outbreaks could have been exacerbated by climate change, espe-
cially by anomalous weather patterns driven by the EL Niño Southern Oscillation (ENSO).

Results:  Monthly malaria cases in Guna Yala (1998–2016) were autocorrelated up to 2 months of lag, likely reflect-
ing parasite transmission cycles between humans and mosquitoes, and cyclically for periods of 4 months that might 
reflect relapses of Plasmodium vivax, the dominant malaria parasite transmitted in Panamá. Moreover, malaria case 
number was positively associated (P < 0.05) with rainfall (7 months of lag), and negatively with the El Niño 4 index 
(15 months of lag) and the Normalized Difference Vegetation Index, NDVI (8 months of lag), the sign and magnitude 
of these associations likely related to the impacts of weather patterns and vegetation on the ecology of Anopheles 
albimanus, the main malaria vector in Guna Yala. Interannual cycles, of approximately 4-year periods, in monthly 
malaria case numbers were associated with the El Niño 4 index, a climatic index associated with weather and vegeta-
tion dynamics in Guna Yala at seasonal and interannual time scales.

Conclusion:  The results showed that ENSO, rainfall and NDVI were associated with the number of malaria cases in 
Guna Yala during the study period. These results highlight the vulnerability of Guna populations to malaria, an infec-
tion sensitive to climate change, and call for further studies about weather impacts on malaria vector ecology, as well 
as the association of malaria vectors with Gunas paying attention to their socio-economic conditions of poverty and 
cultural differences as an ethnic minority.
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Background
Malaria was one among many infectious vector-borne 
diseases that were studied and then locally eliminated as 
a necessary step for the building of the Panamá Canal [1, 
2], and a disease kept under control during the develop-
ment of the Canal Zone as a US colonial possession [3–5]. 
Pioneering research on infectious diseases in the Canal 
Zone showed that malaria was a major problem among 
indigenous populations [6, 7], a situation that, unfortu-
nately, is currently maintained [8]. A major factor shap-
ing this situation is the poor housing quality of the Gunas 
[9] and their different cultural practices [10], where a 
major point of pride has been keeping to a minimum the 
influence of Hispanic culture on Guna traditions [11]. In 
fact, after the independence of Panamá from Colombia 
a series of concessions by the Panamanian government 
to exploit natural resources on the ancestral lands of the 
Gunas, in a fashion that excluded the Gunas from their 
economic benefits, coupled with a series of actions that 
forcibly tried to incorporate the Gunas into mainstream 
Panamanian culture, led to a popular uprising and armed 
revolt in 1925: La Revolución Guna led by Nele Kantule, 
a major leader in the Guna struggle for self-determina-
tion and right to keep their ancestral heritage. Resolu-
tion of this conflict was negotiated through a peace treaty 
whereby the Panamanian government committed itself to 
grant special rights to the native communities of Panamá, 
rights finally granted with the creation of the autono-
mous indigenous region of Guna Yala, originally named 
San Blas, in 1938 [12].

The autonomy granted to the Gunas, nevertheless, 
has not empowered this ethnic group to improve its 
socio-economic and health indicators. Indeed, although 
Panamá is one of the countries with a high likelihood of 
eliminating malaria in the near future [13, 14], malaria is 
by far the most important infectious vector-borne dis-
ease affecting the Gunas, and this probably reflects the 
vulnerability of this ethnic group to malaria transmis-
sion as a socio-economically marginalized population [8, 
15]. Today, around 90% of the malaria cases in Panamá 
come from the Gunas, despite being less than 3% of the 
total population in Panamá, and near 40% of the cases 
occur in the Comarca Guna Yala [16]. In this area the 
dominant malaria vector is Anopheles albimanus [16, 17], 
while the dominant parasite is Plasmodium vivax, which 
consistently accounts for over 90% of the cases [18, 19]. 
In this scenario, where malaria transmission has been 
declining over recent years [8], a major concern is the 
role that climate change might have on malaria transmis-
sion [20, 21], given the high vulnerability of the Gunas 
as a socially marginalized ethnic group. For example, 
with climate change-induced sea level rise it is expected 
that the core of the Guna population, who inhabit small 

islands in the Caribbean Sea, will need to be relocated to 
the mainland of Guna Yala [22], mainly to Cartí, an area 
with very active malaria transmission, unlike the islands 
where transmission is rare [16]. A previous experience of 
relocating Gunas inside Panamá lacked an environmental 
health impact assessment, and soon after Gunas from the 
Comarca Madugandi were relocated to the shores of Lake 
Bayano, several vector-borne infections affected this relo-
cated Guna population [23]. Nowadays, the Gunas have 
the largest malaria burden in Panamá [8]. In that sense, 
it is important to understand different factors affecting 
malaria transmission in Guna Yala. Previous research has 
shown that in the nearby autonomous region of Madun-
gandi, also inhabited by the Gunas, extreme conditions 
in the El Niño Southern Oscillation (ENSO) were asso-
ciated with an exacerbation of malaria transmission in 
this region [8]. This research tests the hypothesis that 
ENSO and weather fluctuations might be associated with 
changes in malaria transmission in the Comarca Guna 
Yala. This research uses tools for time series analysis to 
assess the impact of ENSO, meteorological fluctuations 
(rainfall and temperature) and vegetation dynamics on 
malaria transmission dynamics.

Methods
Study site
The Comarca Guna Yala is located in northeastern Pan-
amá, facing the Caribbean Sea, and bordering Colombia 
in the southeast (Fig. 1). The climate is classified as sub-
equatorial with a dry season [24]. Like the rest of Panamá 
there is little seasonal variability in temperature which 
oscillates between 26 and 27 °C, with an unimodal rain-
fall seasonal pattern with a dry (December to April) and 
long rainy season (May to November). The total popula-
tion of Guna Yala is around 37,000 people, with 19,500 
females and 17,500 males, around 50% of the population 
are under 18  years of age, and around one-fifth of the 
population are children under 5  years old. Poverty is a 
major problem in the region, for example, 91.4% of the 
people are poor, one of the highest in Panamá according 
to a multidimensional poverty index developed by Pan-
amá’s Ministry of Finance [25], and closely related to the 
fact that nearly 80% of the population is dedicated to sub-
sistence farming and fishing [26]. More specifically, there 
are large differences in quality of life parameters, where 
the Gunas have a life expectancy of 71 years well below 
the average for the population of Panamá (78  years), 
and, in general most socio-economic indicators lag well 
behind those of the non-indigenous population [26].

Climatic and landscape covariates
Several weather stations are located in Comarca Guna 
Yala, but only two have long-term rainfall records 
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(Additional file  1: Figure S1). Therefore, to assess the 
impact of local weather fluctuations, data from globally 
interpolated gridded datasets were used. For temperature 
and rainfall, respectively, data from GHCN/CAMS 2  m 
and CMORPH Version 1.0 available at [27] were used. 
Both of these datasets are available in grids of 0.5°. Data 
were downloaded for the gridded box bounded between 
8.5°N and 9.5°N and 79.25°W and 77.75°W. To quantify 
the impacts of global climatic fluctuations the El Niño 4 
time series was employed, an index for ENSO, a global 
climatic phenomena associated with extreme weather 
in Panamá [8]. Niño 4 data were downloaded from the 
US National Oceanic and Atmospheric Administration 
(NOAA) Climate Prediction Center [28]. The NOAA 
data were collected from the area delimited by 5°N–5°S 
and 160°E–150°W of the Pacific Ocean. All these time 
series were available from January 1998 to December 
2016.

As a proxy of vegetation data, information from 
the MODIS land products database was extracted. 
Images for the Normalized Difference Vegetation 
Index (NDVI) from the monthly 1-km resolution veg-
etation (M*D13A3) product, courtesy of the NASA 
Land Processes Distributed Active Archive Center (LP 
DAAC), USGS/Earth Resources Observation and Sci-
ence (EROS) Center, Sioux Falls, South Dakota [29], 
were employed. To download the images the pack-
age MODIStsp for the software R [30] was employed. 
Further GIS procedures for the downloaded images 
were made using the package raster also in the statisti-
cal software R, where each monthly image was clipped 

using a shapefile for Comarca Guna Yala, then stacked 
into a geotiff, from which the average and standard 
deviation for each clipped polygon was computed, thus 
generating a time series. MODIS NDVI based products 
were only available from January 2000 to December 
2016.

Malaria data
Monthly malaria cases for Comarca Guna Yala, from 
January 1998 to December 2016, were obtained from 
the Departamento de Control de Vectores, Ministe-
rio de Salud, República de Panamá. The time series 
records malaria cases from all over Comarca Guna 
Yala, although epidemic foci occurred in selected loca-
tions [16]. The time series only considers confirmed 
malaria cases by the examination of Giemsa-stained 
blood smears prepared by the thick smear method [6]. 
Routinely, all positive slides, and 10% of the negative 
slides, are confirmed by the Public Health Central Ref-
erence Laboratory of the Gorgas Laboratory [8]. This 
microscopic diagnostic has shown a consistent sensitiv-
ity and specificity, close to 100% in each case, confirm-
ing the quality of the data. With the exception of the 
2002–2006 outbreak, where 12% of the cases were due 
to Plasmodium falciparum [18], over 95% of the cases 
are consistently due to P. vivax. For the subsequent 
time series analysis the raw number of malaria cases 
were analysed, provided this time series did not have 
trends that required the estimation of the malaria inci-
dence rate for de-trending [31].

Fig. 1  Map of the República de Panamá, highlighting the location of Comarca Guna Yala. This map was made using as base a public domain map 
from the US National Park Service [84]
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Statistical analysis
Malaria cases, weather and vegetation seasonality
Seasonality in malaria cases and the covariate time series 
was studied using box diagrams for each month [32].

Malaria cases time series correlation structure 
and association with climatic variables
For the analysis, a protocol previously applied to study 
malaria in Panamá was followed [8]. Briefly, the pro-
tocol starts by inspecting the autocorrelation function 
(ACF), i.e., the time series correlation with itself through 
time, and the partial autocorrelation function (PACF), 
i.e., the correlation between consecutive time lags [31]. 
With information about the significant time lags, a null 
autoregressive model with no covariates, was built. This 
null model was used to pre-whiten the time series from 
all covariates using the Kalman filter [31]. Pre-whitening 
is a process where any common autoregressive structure 
is removed from ancillary time series in order to study 
its patterns of association with a focal time series [31]. 
Residuals from the autonomous null model and pre-
whitened residuals from covariates were used to estimate 
cross-correlation functions (CCFs) of malaria incidence 
with each one of the covariates. The CCFs indicate lags at 
which malaria and the covariates were correlated, which 
were subsequently used to build models with covariates. 
The model that included all significant covariates was 
simplified by a process of backward elimination guided 
by the minimization of the akaike information criterion 
(AIC), a function that trades-off model goodness-of-fit 
and parameter number, and whose minimization can be 
used to select among models with a similar number of 
parameters [31]. For the best model error assumptions 
were verified using standard procedures for time series 
analysis [31].

Non‑stationary patterns of association in the time–frequency 
domain
The association of cycles in time series over time can 
be studied using cross wavelet coherence analysis [33, 
34]. Here, wavelet-based analysis was used to determine 
at a particular frequency and time in Niño 4 index and 
malaria, and also to see if these time series were associ-
ated with climatic covariates, i.e., temperature and rain-
fall, and the mean and standard deviation (SD) of NDVI 
in Comarca Guna Yala.

Results
During the study period (1998–2016) there was a total of 
3082 malaria cases in Guna Yala, with a monthly average 
(±  SD) of 13.52 ±  14.03. Seasonal patterns in the stud-
ied time series are presented in Fig. 2. For malaria cases 
(Fig. 2a), there was no clear seasonality, with the number 

of cases being low, around 10 cases per month, through-
out the year. In all months but January there were epi-
demics of 30 or more cases (Fig.  2a). The median Niño 
4 index (Fig.  2b) tended to be lower during the first 
4 months of the year, January to April, but there was rela-
tively little seasonal variability in this index. Meanwhile, 
rainfall (Fig. 2c) had a clearly marked seasonality, where 
December to April are dry, and the rest of the year is 
rainy, reaching a peak in July. Temperature (Fig. 2d) has 
its seasonality contrasting with rainfall, where the dryer 
months are the hottest months, temperatures reaching a 
monotonic peak in April. The NDVI showed a bimodal 
pattern (Fig.  2e) reaching a first peak in May and then 
in September, with an absolute minimum in December. 
By contrast, seasonality in the NDVI SD reached peaks 
when the NDVI is lowest, e.g., in January and December 
(Fig. 2f ).

Figure  3 shows the studied monthly time series high-
lighting ENSO phases. At the beginning of the study 
period (2000–2004), two malaria epidemics occurred 
during the cold and hot phases of ENSO, and overall it 
seems from the plot that malaria cases increased with 
ENSO, especially during the hot phase (Fig. 3a). During 
these periods the Niño 4 index (Fig. 3b) has its maximum 
and minimum, while rainfall tends to decrease during 
the hot phase of ENSO (Fig.  3c) a time when tempera-
ture increases in Guna Yala (Fig.  3d). For NDVI there 
is no clear increase or decrease, both on its mean value 
(Fig. 3e) or SD (Fig. 3f ) that could be associated with spe-
cific ENSO phases.

Autocorrelation patterns in the malaria time series, 
and its association with the different covariates are pre-
sented in Fig. 4, considering data between January 2000 
and December 2016. Only for this period there was 
information about all covariates, while there was data 
for Niño 4, rain and temperature for 1998–2016, and for 
comparison, results for this time period are presented 
in Additional file  2: Figure S2. Figure  4a shows that 
malaria had a descending autoregressive pattern, sugges-
tive of a significant degree of autocorrelation in the time 
series. A similar pattern is also observed for the time 
series between 1998 and 2016 (Additional file  2: Figure 
S2A). More specifically, the time series had a significant 
partial autocorrelation (Fig.  4b) at times lags 1, 2 and 
4 months, which were also significant when considering 
data from 1998 and 1999 (Additional file 2: Figure S2B). 
Malaria cases were negatively associated at a time lag of 
15  months (Fig.  4c, Additional file  2: Figure S2C), and 
positively with rain at 7 months of lag (Fig. 4d, with no 
significance when considering data for 1998–2016, see 
Additional file  2: Figure S2D), and no significant asso-
ciation was observed with temperature independently of 
the studied time frame (Fig. 4e, Additional file 2: Figure 
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S2E). Malaria was negatively associated with NDVI at 
8 months of lag (Fig. 4f ) and no association was observed 
with the SD of NDVI (Additional file  3: Figure S3). The 
information from the correlation patterns was used to 
build seasonal autoregressive models (Table  1), which 
considered 2 monthly time lags as autoregressive, and a 
seasonal autoregressive component with 4 months of lag 
(Fig. 4b). One model did not include any covariate, while 
another included the 3 covariates that were identified as 
significantly associated with the number of malaria cases, 
i.e., the El Niño 4 index with 15 months of lag (Fig. 4c), 

rainfall with 7  months of lag (Fig.  4d) and NDVI with 
8 months of lag (Fig. 4f ). This model with all covariates 
had the minimum AIC when compared with the model 
without covariates, and simpler models (Table 1).

Parameter estimates for the best model are presented 
in Table  2. All coefficients were statistically significant 
(P < 0.05). Meanwhile, as observed in the CCFs, the asso-
ciation of monthly malaria case number was negative 
with the El Niño 4 index (Fig.  4c), NDVI (Fig.  4f ) and 
positive with rainfall (Fig. 4d), the relationship of monthly 
malaria case number being largest with NDVI (Table 2).

Fig. 2  Seasonal patterns. a Malaria (b) Niño 4 (c) rainfall (d) temperature (e) average NDVI (f) SD NDVI. In the boxplots, middle bars indicate median 
values
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As suggested by the changing significance of the asso-
ciation between malaria cases and, for example, rainfall 
(Fig.  4d and Additional file  2: Figure S2), the associa-
tion between malaria case number and the covariates 
were considered highly non-stationary, changing on 
time and frequency (Fig.  5). This result is confirmed 
when looking at the wavelet cross-coherence between 
the monthly number of malaria cases and the El Niño 
4 index (Fig. 5a), which suggests interannual cycles, of 
4-year periods or more, between the two time series 
are associated. The association of malaria with the 

other time series was more localized, and prominent 
at seasonal time scales (1-year period) or biennial, 
as was the case with rainfall (Fig.  5b), and to a lesser 
extent with temperature (Fig.  5c), NDVI (Fig.  5d) and 
the SD of NDVI (Fig.  5e). Meanwhile, the cross wave-
let coherence analyses suggest that impacts of El Niño 
4 impacts of the climatic and vegetation covariates at 
Guna Yala were widely significant (P < 0.05) during the 
study period. For rainfall, associations were stronger at 
the seasonal and biennial time scales (Fig. 5f ), while for 
temperature a similar pattern was observed, but also 

Fig. 3  Monthly time series. a Malaria (b) Niño 4 (c) rainfall (d) temperature (e) average NDVI (f) SD NDVI. In all panels, blue indicates the cold phase 
of the El Niño southern oscillation, while orange the hot phase



Page 7 of 12Hurtado et al. Malar J  (2018) 17:85 

with a significant coherence at interannual time scales 
of 4 years or more (Fig. 5g). Finally, NDVI (Fig. 5h) and 
SD of NDVI (Fig.  5i) were associated seasonally and 
interannually, for cycles of 4-year periods, with the El 
Niño 4 index.

Discussion
Mesoamerica, the geographic region traversing southern 
México to Panamá, is a region where around 3% of malaria 
cases occur in the New World [35]. Most countries in Mes-
oamerica achieved the World Health Assembly (WHA) 
target for the Millennium development goals (MDG) of 
reducing by 75% malaria cases when compared with 2000 
[35, 36]. Nevertheless, Panamá, despite having the highest 
economic growth in Mesoamerica [37], was the only coun-
try unable to achieve the MDG for malaria reduction. In 
fact, the 874 malaria cases reported in 2014 represented 
only a 15.6% decrease in annual malaria cases when com-
pared with 2000 [36]. Most malaria cases, over 85% of the 
total, occur in indigenous groups that inhabit the autono-
mous regions of the country, which are socially margin-
alized and vulnerable populations, and where the use of 
conventional tools for malaria control is less effective than 
among other groups [8]. This failure might reflect the 
alarming social and health inequalities affecting the Gunas 
[26], but also a lack of intercultural understanding [10]; 
other factors, including geographical isolation, internal 
movement of Gunas across the region and cross-border 

Fig. 4  Correlation functions for the 2000–2016 monthly time series. a Malaria time series autocorrelation function (ACF). b Malaria time series 
partial autocorrelation function (PACF). Cross correlation function (CCF) between malaria and c Niño 4 (d) rainfall (e) temperature (f) average NDVI. 
In the plot panels, orange lines indicate the value of the correlation function, the black solid line indicates a correlation value of 0, while the dotted 
lines indicate 95% confidence intervals within which correlations are expected by chance. Time lags in the x axis of all panels are in months

Table 1  Time series model selection

Parameters indicate the parameters considered in each model

AIC Akaike information criterion is minimized for the best model, indicated in 
italic type. Parameters include: AR autoregressive, SAR seasonal AR, Niño 4, rain 
and NDVI, lags are in months

Parameters (lag) AIC

Intercept, AR(1), AR(2), SAR(4) 1571.27

Intercept, AR(1), AR(2), SAR(4), Niño 4(15), rain(7), NDVI(8) 1559.89

Intercept, AR(1), AR(2), SAR(4), Niño 4(15), rain(7), 1568.70

Intercept, AR(1), AR(2), SAR(4), Niño 4(15), NDVI(8) 1562.46

Intercept, AR(1), AR(2), SAR(4), rain(7), NDVI(8) 1562.75

Intercept, AR(1), AR(2), SAR(4), Niño 4(15) 1568.41

Intercept, AR(1), AR(2), SAR(4), rain(7) 1569.72

Intercept, AR(1), AR(2), SAR(4), NDVI(8) 1568.04
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movement of people between Colombia and Guna Yala, 
have further constrained the success of efforts to control 
malaria in this region, thus favouring malaria transmission 
in an epidemic-prone fashion [16, 19].

Moreover, Guna Yala is highly vulnerable to climate 
change, mainly because of its geography characterized by 
an extended coastline on the Caribbean Sea with many 
inhabited small islands [38]. In fact, global warming-
associated rise in sea level and subsequent reduction in 
surface area of some islands has already caused the dis-
placement of some Guna populations to mainland areas 
[22, 39], where there is a higher risk for malaria trans-
mission [16]. Nevertheless, climate change also affects 
malaria transmission by impacting the population 
dynamics of vectors [40] and the relationship of vectors 

and parasites [41, 42], whose understanding can help to 
optimize the targeting of control strategies by the Pana-
manian National Malaria Control Programme. In this 
sense, this study explored the impact of ENSO, meteoro-
logical fluctuations (rainfall and temperature) and veg-
etation on malaria transmission dynamics in Guna Yala.

During the study period (1998–2016), the monthly 
number of malaria cases was relatively low and homog-
enously distributed throughout the years. Epidemics 
were observed in all months, except for January, a behav-
iour that can be exploited to intensify control activities 
or implement intervention measures such as mass drug 
administration during that month, as done elsewhere 
[43]. The monthly malaria cases autocorrelation observed 
at 1 and 2 months lag likely reflect parasite transmission 
cycles between humans and Anopheles spp. mosquitoes 
[44, 45]. Similarly, the 4  months lag is likely related to 
relapses of P. vivax [46–49], which have been described 
as occurring between 3 and 7 months with an average of 
5 months in P. vivax strains from Panamá [50], the domi-
nant malaria parasite transmitted in Panamá, including 
Guna Yala [16].

National drug policy on malaria in Panamá recom-
mends chloroquine in combination with primaquine 
as first-line treatment for P. vivax infections [18]. The 
World Health Organization recommends a 14-day 
course of primaquine to eradicate the liver stage of the 
parasite and prevent relapse of the disease [18]. How-
ever, in most of Panamá, particularly in hard-to-reach 
areas as Guna Yala, primaquine is administered for only 
7 days [51]. Shorter regimens compared to the standard 
14-day primaquine have been associated with higher 

Table 2  Parameter estimates for  the  best time series 
model explaining the number of malaria cases in Comarca 
Guna Yala (2000–2016), Panamá

Parameters include: AR autoregressive, SAR seasonal AR, Niño 4, rain and NDVI, 
lags are in months

* Statistically significant, P < 0.05

Parameter (Lag) Estimate SE Z

Intercept 37.896 7.854 4.825*

AR(1) 0.532 0.072 7.389*

AR(2) 0.16 0.074 2.162*

SAR(4) 0.263 0.088 2.989*

Niño 4(15) − 5.61 2.503 − 2.241*

Rain(7) 0.508 0.237 2.143*

NDVI(8) − 30.946 9.367 − 3.304*

Error variance 153.5

Fig. 5  Cross wavelet coherence analysis for monthly time series. Panels show the cross-wavelet coherence between: a malaria and the El Niño 
4 index, NI (b) malaria and rainfall (c) malaria and temperature (d) malaria and NDVI (e) malaria and SD of NDVI (f) NI and rainfall (g) NI and 
temperature (h) NI and NDVI (i) NI and SD of NDVI. A coherence scale is presented on the right-hand side of the figure, which goes from zero (blue) 
to one (red). Red regions in the plots indicate frequencies and times for which the two series share power (i.e., variability). The cone of influence 
(within which results are not influenced by the edges of the data) and the significant coherent time–frequency regions (P < 0.05) are indicated by 
black solid lines. Note that cross-wavelet analysis including NDVI data are for 2000–2016, while all other analyses are for 1998–2016
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relapse rates [52]. Moreover, due to their traditional 
beliefs and practices, Gunas do not adhere well to treat-
ments they consider foreign to their culture [10]. Thus, 
many Guna patients fail to complete the full dosage, 
resulting in inadequate blood drug concentration that 
favours relapse [51].

Environmental covariates with significant associa-
tions (P  <  0.05) were rainfall, positively associated with 
7  months of lag, and cases were negatively associated 
with the El Niño 4 index (15  months of lag) and the 
NDVI (8  months of lag). These relatively long delays 
might emerge as consequence amplifying cycles of trans-
mission, a phenomenon previously described in East 
Africa [53], where a triggering environmental distur-
bance has an effect that exacerbates through time via the 
amplification of those environmental signals, for exam-
ple, by mosquito vectors [40]. These long lags might also 
reflect an association with a harmonic of a cycle from a 
shorter period [54]. In plain words, if there is a cycle of 
2  months associated with the life cycle of the parasite, 
then the incidence can also be expected to be associated 
at 4, 6 and 8 months, which are harmonics of 2 months. 
Then if rainfall itself has an autocorrelated pattern, where 
7  months is a natural cycle, one can expect the asso-
ciation to be stronger due to a phenomenon known in 
physics as ‘resonance’ [54, 55] that emerges in coupled 
oscillators (which metaphorically can be used to describe 
vector-borne disease, mosquito and rainfall association 
[56]) and which increases the association at time lags that 
correspond to rainfall cycles or rainfall impact on malaria 
transmission. Moreover, here it is important to highlight 
the extensively validated methods employed for this anal-
ysis [31], warrant that these lags are not spurious results. 
The ENSO is considered a potential driver of malaria 
transmission in endemic regions across the globe [44, 53, 
57–64], and for other tropical diseases in the region [34, 
65–67]. Panamá, with extended coastlines in the Pacific 
and the Caribbean, is highly vulnerable to the impact 
of this global climatic phenomenon [68]. In fact, ENSO 
events may trigger heavy rainfall in the Caribbean coast 
and at the same time severe and prolonged drought in the 
Pacific Coast [68, 69]. In this sense, this study also found 
that interannual cycles, of approximately 4-year periods, 
in monthly malaria case numbers were significantly asso-
ciated with ENSO, measured by El Niño 4 index. This 
result is similar to that previously found in the Madun-
gandi autonomous region, a nearby mainland region also 
inhabited by the Gunas [8].

About the other environmental covariates associated 
with malaria cases in Guna Yala, it is well known that 
rainfall is necessary to form water pools that are used 
by Anopheles spp. as breeding and larval sites [2, 20, 21]. 
This is important in Guna Yala as many of the inhabited 

islands lack fresh water and many temporal water pools 
suitable for Anopheles spp. breeding are formed soon 
after the rainy season ends [16]. Although temperature 
has a critical impact on mosquito and parasite traits that 
determine the transmission potential of malaria [41, 42, 
70], this analysis did not find a significant association 
with malaria cases in Guna Yala. This is probably related 
to the lack of a marked seasonality that could disrupt 
Plasmodium spp. development in Anopheles spp. mos-
quitoes, with the average temperature of 26.99 °C (range 
24.45–29.36 °C] close to 26.00 °C (range 17.00–33.00 °C) 
a temperature deemed optimal for malaria transmission 
[42]. Meanwhile, the negative impact of NDVI might be 
related with local ecological conditions [58, 71], where 
the excessive increase of vegetation biomass is detri-
mental for population dynamics of An. albimanus and 
other dominant vector species present in Guna Yala, 
mainly Anopheles aquasalis and Anopheles punctimac-
ula [72–74]. Indeed, it is very important to highlight the 
importance of local ecological conditions for different 
dominant malaria vector species. For example, An. albi-
manus which is considered the main malaria vector in 
Guna Yala [16], breeds in a wide variety of aquatic habi-
tats with several types of aquatic vegetation [2, 74], but 
with a biology sensitive to shade [2] which might explain 
the negative impact of increased terrestrial vegetation. By 
contrast, An. punctimacula shows preference for shallow 
waters shaded by coconut palms [16, 17], while An. aqua-
salis breeding sites are mainly mangroves and coastal 
wetlands, and its abundance has been associated with 
salinity [75, 76]; ecological characteristics predominant 
in most Guna settlements in Guna Yala. Interestingly, 
this latter vector species has a restricted distribution in 
Panamá, but is particularly prevalent in Guna Yala, being 
the primary vector in some communities of this region 
[17]. Probably these other vectors, better suited to local 
habitats observed in Guna Yala, may be responsible for 
malaria transmission, but that is open to further research.

Finally, some limitations of this study need to be high-
lighted: for the analysis P. vivax and P. falciparum data 
were together as total malaria cases because, with the 
exception of the 2004 epidemic [18], over 95% of the cases 
were due to P. vivax during the study period. Besides this, 
there might be some problems in the accuracy of case 
detection given the passive nature of the malaria sur-
veillance system, a problem common in other malaria-
endemic regions [46, 77]. Similarly, the lack of association 
with temperature might be an artifact of the geographical 
scale of the study, given that at small geographical scales 
temperature is important for mosquito biology and the 
parasite vector interaction [41, 75]. There is the pervasive 
problem of ignoring other contextual drivers of malaria 
transmission such as poverty [8, 78, 79], parasite invasion 
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through unplanned migration [19, 80], and the under-
studied socio-cultural barriers to accept and implement 
malaria control measures among the Gunas [10].

Conclusions
Results from this study showed that ENSO, rainfall and 
NDVI were associated with the number of malaria cases 
in Guna Yala during the study period (1998–2016). These 
results highlight the vulnerability of Guna population to 
malaria, an infection sensitive to climate change, and call 
for further studies about weather impact on malaria vec-
tor ecology, especially the temporal impact of weather 
fluctuations on population dynamics [81, 82], some-
thing that has not been done for An. albimanus in the 
Comarca Guna Yala of Panamá, as well as the association 
of malaria vectors with the Gunas, paying special atten-
tion to their socio-economic conditions of poverty and 
cultural differences as an ethnic minority. Other biologi-
cal factors, such as the influx of malaria parasites by the 
migration of the Gunas across their ancestral territory, 
and other ethnic migrant groups: all of these conditions 
favour malaria transmission in the landscape inhab-
ited by the Gunas. Information on the potential impact 
of climate factors on malaria incidence might be helpful 
to guide malaria prevention programmes aimed at the 
eventual elimination of this disease, from República de 
Panamá and Mesoamerica. For example, strategic inter-
ventions in the vulnerable region of Guna Yala, should 
include comprehensive health impact assessments [21, 
79, 83] with a focus in areas foreseen to see large influx of 
climate change triggered Guna migration, such as Carti, 
a site already chosen for island Guna population reloca-
tion following the disappearance of the Caribbean Islands 
currently serving as home for most of the Gunas living in 
Guna Yala.
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Additional file 1: Figure S1. Rainfall time series. (A) Mulatupo (9.000259, 
− 77.866676) and (B) Nargana (9.444246, − 78.585331). Data are courtesy 
of ETESA, Panamanian National Electrical Company.

Additional file 2: Figure S2. Correlation functions for the 1998–2016 
monthly time series. (A) Malaria time series autocorrelation function 
(ACF) (B) Malaria time series partial autocorrelation function (PACF). Cross 
correlation function (CCF) between malaria and (C) Niño 4 (D) rainfall (E) 
temperature. In the plot panels, orange lines indicate the value of the 
correlation function, the black solid line indicates a correlation value of 
0, while the dotted lines indicate 95% confidence intervals within which 
correlations are expected by chance. Time lags in the x axis of all panels 
are in months.

Additional file 3: Figure S3. Cross correlation function between malaria 
and SD NDVI. The orange line indicates correlation function values at 
different time lags (in months), the black solid line indicates a correlation 
value of 0, while the dotted lines indicate 95% confidence intervals within 
which correlations are expected by chance.
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