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Abstract

Aedes aegypti is one of the most common urban tropical mosquito species and an important vector of dengue,
chikungunya, and yellow fever viruses. It is also an organism with a complex life history where larval stages are
aquatic and adults are terrestrial. This ontogenetic niche shift could shape the density-dependent regulation of this
and other mosquito species, because events that occur during the larval stages impact adult densities. Herein, we
present results from simple density-dependent mathematical models fitted using maximum likelihood methods to
weekly time series data from Puerto Rico and Thailand. Density-dependent regulation was strong in both populations.
Analysis of climatic forcing indicated that populations were more sensitive to climatic variables with low kurtosis,
i.e., climatic factors highly variable around the median, rainfall in Puerto Rico, and temperature in Thailand. Changes
in environmental variability appear to drive sharp changes in the abundance of mosquitoes. The identification of den-
sity-independent (i.e., exogenous) variables forcing sharp changes in disease vector populations using the exogenous
factors statistical properties, such as kurtosis, could be useful to assess the impacts of changing climate patterns on
the transmission of vector-borne diseases.
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Introduction

Aedes aegypti (L.) (Diptera: Culicidae) is a common pan-
tropical urban mosquito with a complex life cycle and
vector of several human pathogens. In general, the
complex life cycle of mosquitoes is driven by a major
ontogenetic niche shift between larval and adult stages.
Ae. aegypti larvae inhabit aquatic habitats and forage on
suspended particles and aquatic organisms (Christo-
phers, 1960), terrestrial adults fly, and primarily forage
on plant sugars or blood for female egg development
(Harrington et al., 2001). The success of Ae. aegypti in
urban environments is due to the abundance and suit-
ability of larval habitats, i.e., artificial water containers,
and resources for reproduction, such as blood from
human hosts (Edman, 1988). These characteristics and
other behavioral aspects make this mosquito a very effi-
cient vector of several pathogens (Gubler, 1989), most
notably, dengue, chikungunya, and yellow fever
viruses. Complex life cycles represent a major challenge
to understand density-dependent regulation of popula-
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tions (Ratikainen ef al., 2008). For example, density-
dependent regulation during larval stages has been
proposed as a major determinant of Ae. aegypti adult
population size (Dye, 1984). However, the impact of
exogenous factors, such as resource limitation, can also
regulate the abundance of adult mosquitoes (Legros
et al., 2009). An additional layer of complexity is added
by the sensitivity of Ae. aegypti populations to changes
in the external environment. For example, eggs dia-
pause and only hatch when humidity is very high or
after they become submerged in water, and like other
insects, their developmental rate is a function of tem-
perature (Christophers, 1960). Trying to understand the
combined effect of all these factors in shaping the abun-
dance of Ae. aegypti has been primarily tackled with
complex models that capture a large quantity of bio-
logic details (Gilpin & Mcclelland, 1979; Focks et al.,
1993; Magori et al., 2009). Such models, although capa-
ble of replicating some real scenarios, lack the power to
offer generalizations about the processes regulating
population dynamics and tend to ignore the role of the
changing environment (Levins, 1968). Thus, under-
standing the canalization of environmental variability
on population dynamics, where environmental changes
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impacting the development of organisms have the
power to shift their population dynamics (Schmalhau-
sen, 1949), becomes both an interesting question and a
pressing need to be prepared against societal challenges
that might emerge from the response of living organ-
isms to climate change (Chaves & Koenraadt, 2010).
Herein, we use simple models to understand the
importance of exogenous climatic factors, i.e., forcing,
and density dependence on Ae. aegypti population
dynamics. We ask whether population dynamics of this
mosquito species can be forced by climatic factors, when
density-dependent regulation is considered, and
whether it is possible to predict which climatic factor is
most likely to force the dynamics based on the distribu-
tion moments of the considered climatic variables. We
ask these questions based on the corollary of Schmal-
hausen’s Law, which predicts that organisms can be
more sensitive to extreme events in variables where con-
ditions around the median are more uncertain (Chaves
& Koenraadt, 2010). Our goal is to derive generaliza-
tions about the canalization of climatic variability on
population dynamics of this mosquito species, a proto-
type of organisms with complex life cycles. We use max-
imum likelihood methods to fit data from weekly time
series of domiciliary mosquito abundance from Puerto
Rico and Thailand (Scott et al., 2000) to simple mathe-
matical models with density-dependent recruitment of
adult individuals. We use nonlinear functions to incor-
porate the impacts of rainfall and temperature on
mosquito population dynamics, and to successfully
capture the nonstationary impacts of climatic variability
on the dynamics of both populations unveiled using
cross-wavelet analysis. Our results show that density-
dependent regulation of adult individuals is present in
populations at both locations. Parameter estimates and
mathematical analysis of the best model support den-
sity-dependent dynamics with a single stable nontrivial
equilibrium, where any response to perturbations is
expected to be transient. However, population dynam-
ics can be reactive, transiently altering population den-
sities via propagation of disturbances, especially when
immature survival is low and fecundity is high. In fact,
the product of these parameters, immature survival
and fecundity, is of major importance to the dynamics
of the populations we studied, as revealed by a pertur-
bation analysis of the best model with parameter esti-
mates from the best fits. Populations are more sensitive
to small changes in climatic variables with a relative
wider variability around the median (a platykurtic vari-
ability); i.e., rainfall for Puerto Rico and temperature for
Thailand. This result shows the importance of climatic
variability on population dynamics, a topic rarely
explored in the context of the forcing of population
dynamics, where the main focus has been on the impact

of average values (Pascual et al., 2006). Our results also
highlight aspects of the internal relations between cli-
mate change and climate variability (Stenseth et al.,
2002; Paaijmans et al., 2010) by stressing the importance
that changes in the variability of climate, especially the
frequency of extreme events, can have on the popula-
tion dynamics of organisms.

Materials and methods

Data

Weekly mosquito density time series data (Fig. 1) were
obtained by averaging Ae. aegypti abundance obtained from 10
houses (out of a total of 36 monitored houses) in the neighbor-
hoods of Reparto Metropolitano and Puerto Nuevo, Rio Pie-
dras (18°23'N, 66°39'W) Puerto Rico; and from 10 houses (out of
a total of 23 monitored houses) in Village 6 (13°38'N, 101°18'E)
of Hua Sam Rong Tambon (subdistrict), Plaeng Yao Amphoe
(county), Chachoengsao (province) in Thailand. In both sites,
none of the houses was sampled in consecutive weeks. Houses
were sampled using a battery powered aspirator in Puerto Rico
(March 1991-March 1993) and modified vacuum cleaners in
Thailand (June 1990-May 1993). These are reliable and compa-
rable methods for sampling adult Ae. aegypti populations (Scott
et al., 2000). Samples were restricted to houses because this is
the main resting habitat of adult Ae. aegypti (Christophers, 1960;
Scott et al., 2000). Temperature and rainfall records (Fig. 1)
were obtained from weather stations within a 20 KM radius of
the sampled sites. Seasonal patterns of rainfall and temperature
range in Puerto Rico and Thailand, during the respective study
periods, were within the range of recorded variability for the
studied areas (Fig. S1). See Scott et al. (2000) for further details
on study sites, sampling, and time series data.

Descriptive time series analysis

We examined the correlation structure of mosquito time series
data using standard techniques for time series analysis (Shum-
way & Stoffer, 2000). These included the autocorrelation func-
tion (ACF), the Partial ACF (PACF), and the cross-correlation
function (CCF) of the pre-whitened residuals. We also
assessed the nonstationary patterns of association (i.e., chang-
ing through time) between climatic variability and mosquito
time series using cross-wavelet analysis (Chaves & Pascual,
2006; Cazelles et al., 2007). We used this information to verify
assumptions considered in the process of model building. Fur-
ther details are presented in the Appendix.

Description of the variability in the climatic time series

Rainfall and temperature are very different phenomena, both
in terms of the physical variables measured, their dynamics,
and how they are recorded. Rainfall is episodic (i.e., at any
time it either rains or not) and records of rainfall are cumula-
tive (i.e., a time series of rainfall shows the cumulative amount
of rain in place for a time period). In contrast, temperature con-

© 2011 Blackwell Publishing Ltd, Global Change Biology, doi: 10.1111/j.1365-2486.2011.02522.x
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Fig. 1 Data. Weekly average mosquito density per house, N,, in (a) Puerto Rico and (b) Thailand; cumulative weekly rainfall in (c) Puerto
Rico and (d) Thailand; weekly temperature average, thick line, maximum and minimum, thin lines, in (e) Puerto Rico and (f) Thailand.

stantly fluctuates, and the way in which it is recorded includes
point measurements that normally are averaged over a time
period, and for those time periods, maximum and minimum
can be recorded. These differences make the standardization
of records necessary to make them comparable. A common
procedure to standardize rainfall variability is to accumulate
values over time and keep the residuals of a linear regression
of these accumulated values as function of time (Pascual et al.,
2008). In the case of temperature, living organisms experience
all the different values occurring during a time period. As
Ae. aegypti is known to be sensitive to extreme temperature
values (Headlee, 1940; Bar-Zeev, 1958a) we computed the
range of the weekly temperatures to study variability.

An additional challenge in depicting variability in climatic
factors is describing the kind of variability experienced by
individuals. For example, variance will give an idea of the var-

iability around the mean value, which can be standardized to
the magnitude of the mean by computing the coefficient of
variation; i.e., the ratio between the standard deviation and
the mean. However, according to Schmalhausen’s law
(Chaves & Koenraadt, 2010), organisms normally cope with
regular patterns of variability and can be differentially sensi-
tive to extreme events, depending on how common or
infrequent these extreme events are. However, variance and
the coefficient of variation fail to provide information about
the frequency of events close and far from the mean. To study
the variability in the environmental factors, we used the
kurtosis, also known as the fourth standardized moment,
which measures how much of the variability in a distribution
is due to infrequent extreme events as opposed to modestly
sized deviation from the mean (Mardia, 1970). Mathemati-
cally, kurtosis, K, is defined as the ratio between the fourth

© 2011 Blackwell Publishing Ltd, Global Change Biology, doi: 10.1111/j.1365-2486.2011.02522.x
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moment around the mean, y4, and the square of the variance,
a?,ie., K= puy/c* (Mardia, 1970).

Models: structure, data fitting and selection

We considered three models: (1) Delayed Ricker, (2) Delayed
Beverton-Holt, and (3) Delayed Gompertz, to select the model
with the highest ability to explain the observed mosquito
records. The Delayed Ricker model comes from the discrete
time integration of the delayed logistic equation (Turchin,
2003), and the Delayed Beverton-Holt and Gompertz models
abstract the processes whereby the population size at a given
time is a function of survivors from the previous time step
and the recruitment of emerging adults whose density is a
nonlinear function of the 2-week lagged adult density. These
mechanisms seem appropriate to describe the dynamics of
Ae. aegypti, because for the recorded temperatures at our study
sites, the pre-imaginal developmental roughly corresponds to
a week (Headlee, 1940). Ae. aegypti larval density, similarly,
does not seem to affect adult emergence success when
resources are not limiting (Bar-Zeev, 1957, Wada, 1965; Barb-
osa et al., 1972; Dye, 1982). However, emerging individuals
are smaller and less fecund (Bar-Zeev, 1957). We fitted the
mosquito time series to these models considering all possible
combinations of the following cases: (1) Both with and without
considering exogenous forcing, EXO, using nonlinear func-
tions that allowed us to test the existence of climatic forcing
on Ae. aegypti population dynamics, (2) Assuming that the
impact of the forcing was either multiplicative or additive, to
test whether the forcing acted on the rate of population
growth, ie., a multiplicative forcing, or had mere additive
effects (Stenseth ef al., 2002), and (3) Considering either obser-
vation error or environmental stochasticity, to assess whether
unexplained factors homogenously affected all individuals, as
expected under environmental stochasticity (Mangel, 2006), or
more likely represented systematic errors in our records (Bol-
ker, 2008). We considered that errors had a normal distribu-
tion and fitted the models using maximum likelihood
methods (Bolker, 2008). We then selected the best models for
each site using the Akaike and Bayes Information Criteria
(Shumway & Stoffer, 2000). Full details about the models,
detailed assumptions, equations (including a stage structured
matrix representation of the best model), and nonlinear func-
tions for the exogenous forcing and maximum likelihood
parameter estimation are presented in the Appendix.

Stability, reactivity and perturbation analysis of the best
models

For each of the best models per study site, both with and with-
out exogenous forcing, we performed a stability analysis to
determine the conditions for persistence of the population
with the estimated parameters (Levins & Wilson, 1980). We
tested the significance of the stability by performing a boot-
strap as described by Neubert et al. (2009). We also studied
the reactivity of the system; i.e., the maximum amplification
rate of a perturbation immediately after its occurrence (Neu-
bert et al., 2009), and generated a map for reactive parameter

regions. A reactivity analysis helps to further understand the
transient dynamics of a stable population when perturbed
away from its equilibrium. In the case of Ae. aegypti, the reac-
tivity analysis provides insights on the role that its stage struc-
ture could have in transient mosquito outbreaks. Furthermore,
model derivation and parameter constraints made possible a
reactivity analysis in absence of larval data (see Appendix for
further details, especially regarding the connections between
discrete time equations and stage structured matrix models).
We also performed a perturbation analysis consisting of sensi-
tivity and elasticity analyses, which quantitate the impacts of
changes in parameters in absolute and in relative terms,
respectively. For the perturbation analysis, we used methods
recently developed for nonlinear systems described by Ca-
swell (2008). Full details about the analytic and computational
procedures are presented in the Appendix.

Results

To examine the structure of the mosquito density time
series and its linear association with climatic variables,
we performed a descriptive time domain analysis for
each time series (Shumway & Stoffer, 2000). We used
each mosquito time series to compute ACF, PACF, and
CCF functions with the pre-whitened time series of the
climatic variables (Fig. S2). We found both time series
to be second order autoregressive processes (Fig. S2b
and d). The Puerto Rico time series was positively asso-
ciated with a 1-week lagged rainfall (Fig. S2e), and the
Thai time series was positively led by maximum tem-
perature with a lag of 10 weeks (Fig. S2k). To further
confirm this association, we used cross-wavelet coher-
ence and phase analyses in the time-frequency domain
(Cazelles et al., 2008). This analysis confirmed the
association between the climatic and mosquito time
series, and showed the association to be nonstationary
(Fig. S3) as demonstrated by the lack of a continuous
coherence in the time-frequency domain, i.e., the associ-
ation changed in strength and significance over time,
especially with rainfall in Puerto Rico (Fig. S3a top
plot), and with maximum temperature in Thailand
(Fig. S3g top plot). Regarding the cross-wavelet phase,
it is important to highlight that angles separating mos-
quito abundance, N;, and rainfall in Puerto Rico (Fig.
S3a bottom plot) and N; and maximum temperature in
Thailand (Fig. S3g bottom plot) were positive, indicat-
ing that peaks in mosquito abundance follow peaks in
the forcing variables considered in the models, robustly
supporting the patterns observed with the cross-corre-
lation functions (Fig. S2e and k). This information was
used to define nonlinear functions for the forcing able
to capture the nonstationary associations, as explained
in detail in the Appendix. To evaluate the potential for
density dependence, we plotted the per-capita growth
rate, r, of each series as a function of current density,

© 2011 Blackwell Publishing Ltd, Global Change Biology, doi: 10.1111/j.1365-2486.2011.02522.x
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N;, and 1 week of lag density, N; 4, and found that in
both mosquito time series, the values of r decrease
when both densities are high, and increase when both
densities are low (Fig. 2a and b). To further understand
the impacts of the forcing, we plotted density, N;, as
function of environmental covariates (Fig. 2c and d).
For Puerto Rico, the relationship between mosquito
abundance and rainfall was best described by the abso-
lute difference in rainfall for two consecutive weeks,
where low mosquito densities are associated with
highly variable rainfall (Fig. 2c). For Thailand the rela-
tionship between mosquito abundance and maximum
temperature showed a positive association when values
were above a threshold value of ca. 34 °C (Fig. 2d). The
Akaike and Bayes information criteria (Table S1)
selected the Gompertz model with environmental sto-
chasticity as the best model to describe the density-
dependent regulation of both mosquito populations:

Ni = (sNiot + p(iNY,)) exp(e) 1)

In this model, s denotes adult survival, p the emer-
gence probability of immature mosquitoes, A4 the per-
capita fecundity, 0 is an exponent that accounts for
density dependence, and ¢ is a random, independent,
and identical distributed normal variable with variance
Uzenvs- Further details and assumptions of this model

@

N;

A(RY)
0
!
o

I
-100 -50 0 50 100
A(Rw1)

and its derivation from a stage-structured model are
presented in the Appendix. The model in equation (1)
increased the amount of deviance explained when com-
pared with a 2nd order autoregressive model, over 62%
vs less than 20% (Scott et al., 2000), and more deviance
was explained when the forcing through simple addi-
tive functions, EXO(ClimaticVariable), was included:

N; = (sNi_1 +p(ZN}_,) + EXO(ClimaticVariable)) exp()
@)

In the case of Puerto Rico, the forcing by rainfall was
included using a saturation function. In the case of
Thailand, forcing by the maximum temperature was
included using a threshold function (see Materials and
methods and Appendix). Due to parameter unidentifi-
ability between p and / in equations (1) and (2), which
arises from the transformation of a stage-structured
matrix model into a delayed difference equation (for
details see the Appendix), we only estimated ' = p/.
We estimated parameters for the models with and
without forcing for Puerto Rico and Thailand (Table 1).
Interestingly, the variables that increased the likelihood
when considered for forcing had the lowest kurtosis;
i.e., their variability was wide around the median
(Fig. 3a and b). This result might indicate an increased
sensibility of mosquitoes to small changes in environ-

) g .
o * "
o ] *
Z o] .
[a\}
=,
r=0,"*
T T T T
10 20 30 40
Ni_s
d) o | 5
< o

Fig. 2 Density Dependence and Forcing. Population growth rate [r = log N; — log N,_;, represented by * in the plots] as function of cur-
rent [N;] and 1 week of lag [N; ;] densities in (a) Puerto Rico and (b) Thailand. *size is proportional to the growth rate (see legend for
reference when r = 0) (c) Puerto Rico current density [N;] as function of two lags in the difference of rainfall, 4R. The legend indicates
different ranges of N; (d) Thai current density [N;] as function of maximum temperature, T, with 10 weeks of lag.

© 2011 Blackwell Publishing Ltd, Global Change Biology, doi: 10.1111/j.1365-2486.2011.02522.x
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Table 1 Parameter estimates and confidence limits of the best models for Thailand and Puerto Rico. In both sites, the Gompertz
model was best. In Thailand, the forcing was via a threshold function of maximum temperature with a lag of 10 weeks. In Puerto
Rico, the forcing was via a Holling type II saturating function of rainfall, in which the numerator had a lag of 1 week and the
denominator had a lag of 2 weeks. Details about the forcing functions and the Gompertz model are presented in the appendix. Due
to parameter unidentifiability 2’ = p/ is presented.

With forcing Autonomous (no forcing)
L95% U95% L9%5% U9%%
Site Parameter Estimate CL CL P-value  Estimate CL CL Z P-value
Thailand 8 0.317 0.294 0.341 3.9281 8.56e-05 0.409 0.384 0435 54355 7.58e-07
i 1.71 1.60 1.83 42445 2.19e-05" 1.38 1.27 1.49 3.1356  0.0001198"
0 0.505 0.476 0.533 5.1048 3.31e-07" 0.576 0542 0.610 62232 7.79e-08"
o 2.25 2.07 2.41 22806 0.02257° - - - - -
T, 34.03 33.88 34.18 65.6596 <le-15" - - - - -
Ganvs 0.181 0.195
Puerto Rico 5 0.443 0.330 0.545 5.7289 1.01e-08" 0.395 0217  0.591 41492  3.34e-05"
i 1.34 1.09 1.66 55511 2.84e-08° 1.23 0.61 2.07 3.3282  0.000874"
0 0.497 0.277 0.626 4.6662 3.07e-06" 0.539 0256 0.825 39134 9.34e-05"
o —0.0213  —0.0257 —0.0121 —9.7436 <le-15° - - - - -
B —0.161  —0.163 —0.158 —471.078 <le-15" - - - - -
Ganvs 0.303 0.364

*Statistically significant (P<0.05).
L, lower; U, upper; CL, confidence limits.

mental factors that are proportionally more uncertain
around the median condition. In both Puerto Rico and
Thailand, large sharp changes in mosquito population
density can be explained by the impacts of forcing on
the population dynamics (Fig. 3c and d), which seems
to be reinforced by the nonstationary patterns of associ-
ation between mosquito abundance and low kurtosis
climatic factors: rainfall in Puerto Rico (Fig. S2a) and
maximum temperature in Thailand (Fig. S2g). Models
more successfully fitted the Thai data (Fig S4b and d)
than the Puerto Rico data (Fig. S4a and c). The impor-
tance of the forcing to explain abrupt changes in mos-
quito density is also reflected by model success to
reproduce the original data. Fit of models considering
the forcing (Fig. S4c and d) outperformed models with-
out forcing (Fig. S4a and b). In fact, the role played by
the forcing in shaping large nonmonotonic changes in
mosquito density can be further observed in Fig. S5,
which shows how simulations captured extreme mos-
quito densities when forcing was explicitly considered
with nonlinear functions in both Puerto Rico (Fig. S5c)
and Thailand (Fig. S5d), in contrast to when the forcing
was ignored (Fig. S5a and b). Parameter estimates for
the model presented in equation [1] indicated that
dynamics at the nontrivial equilibrium are significantly
(P<0.05) stable in both Puerto Rico (Fig. S6a and c¢) and
Thailand (Fig. S6b and d), a result confirmed by the
mathematical analysis of the model (Appendix). A per-
turbation analysis of the best models with and without

forcing indicated that dynamics were most sensitive, in
absolute terms, to changes in the parameter 0 (Fig. 4a
and b), and in relative terms to changes in 1* (Fig. 4c
and d). Finally, we performed a reactivity analysis to
gain insights into life history patterns that could tran-
siently amplify the impacts of climatic forcing, or any
other disturbance, on Ae. aegypti population dynamics.
The reactivity analysis supplements our lack of data on
larval dynamics, especially because immature survival,
p, is encompassed in 4’, a key parameter in the dynam-
ics as uncovered by the perturbation analysis. As
parameters p and /A are nonidentifiable and only their
product (2’ = pl) can be estimated, we studied reactiv-
ity for combinations of 1’ and p. It is important to note
that unlike stability, in which these two parameters are
multiplied to compute the dominant eigenvalue and
determine the stability of a system, reactivity (i.e., the
largest singular value of a model jacobian evaluated at
equilibrium) is a function of these two parameters sepa-
rately (see Appendix for details). We studied reactivity
for combinations of p and 4 that result in a value of A’
contained within the 95% confidence limits of the esti-
mated parameters. In both Puerto Rico (Fig. 5a and c)
and Thailand (Fig. 5b and d) low values of p, which
imply large values of %, lead to reactive dynamics,
whereas large values of p (low 1) lead to nonreactive
dynamics. The explicit consideration of the forcing
increases the region of the parameter space where the
model is nonreactive in Thailand, whereas for Puerto

© 2011 Blackwell Publishing Ltd, Global Change Biology, doi: 10.1111/j.1365-2486.2011.02522.x
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Fig. 3 Climatic variability and the impact of forcing on population dynamics. Boxplots for the standardized rainfall anomalies [Rain]
and temperature range [Temp] of Puerto Rico (a) and Thailand (b), boxplot lines indicate quartiles and the median. Response to the
forcing in Puerto Rico (c) and Thailand (d), dashed lines (Forcing in the legend) represent the changes in population density that can be
attributed to the forcing, solid lines (DFR in the legend) represent population density after the forcing was subtracted and open circles
represent the observed weekly abundance. For Puerto Rico, the kurtosis of rainfall anomalies was 2.53, and temperature range was
3.40. For Thailand, the kurtosis of rainfall anomalies was 2.80, and temperature range was 1.57. It is worth noticing that in both studies,

sites outbreaks are linked to extreme events in the more platykurtic variables.

Rico they are similar. This point is better illustrated by
the cross-section of the /' estimates presented in Table 1
as function of p for Puerto Rico (Fig. 5e) and Thailand
(Fig. 5f). In the former, there are no major differences
between the reactivity of the forced and autonomous
models, whereas in the latter, the forced model
becomes reactive after reaching values of p smaller than
those that trigger reactivity in the model without
forcing.

Discussion

A major research theme in ecology is understanding
population regulation, the tendency of populations to
have bounded abundances (Royama, 1992; Turchin,
2003). In most cases, this observation is further sup-
ported by the ubiquity of stability in nonlinear popu-
lation models when evaluated with parameters
estimated from real populations (Hassell et al., 1976;
Ellner & Turchin, 1995; Kendall et al., 1998). In fact,
nonlinear population models have shown intrinsically

generated cycles and chaotic dynamics only in very
few instances, with best examples coming from labo-
ratory populations (Costantino et al.,, 1997; Massie
et al., 2010). Although it is widely accepted that fluc-
tuations around what seem to be stable regimes are
due to environmental fluctuations (Sibly et al., 2005,
2007; Ziebarth et al., 2010), understanding forcing by
environmental covariates is an elusive goal, which at
best has been limited to the: (1) addition of linear
functions (Chaves & Pascual, 2007; Yang et al.,
2008b), (2) description of nonstationary association
patterns with different aspects of climate (Cazelles
et al., 2008; Chaves & Kitron, 2011), and (3) predic-
tion of species phenology in seasonal environments
(Taylor, 1981; Atkinson, 1994).

Herein, we exploit the detailed understanding of the
life cycle and life history patterns of one of the best
studied animal species, Ae. aegypti (Christophers, 1960;
Dye, 1984; Legros et al., 2009) using unique long-term
abundance datasets from two very different regions of
the world. From this analysis, we are able to gain

© 2011 Blackwell Publishing Ltd, Global Change Biology, doi: 10.1111/j.1365-2486.2011.02522.x
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insights into patterns of sensitivity of this species to
changing environments that may be generalized to
other species. Fluctuations in Ae. aegypti population
density seem to be more sensitive to changes in fac-
tors whose pattern of variability is less bounded
(lower kurtosis), or where normal conditions are more
unstable over time. The relatively larger variability
around the median in platykurtic distributions reflect
patterns of variability that are very uncertain around
the median conditions, e.g., circadian or seasonal
cycles in the environment, or any regular change
(Stearns, 1981), to which organisms can become
adapted (Gause, 1942; Beissinger & Gibbs, 1993).
Adaptation of individuals to more regular changes in
the environment can generate a trade-off in their toler-
ance to other environmental factors (Schmalhausen,
1949; Gabriel et al., 2005). Thus, in Thailand, the need
to be adapted for a dry season is costly to mosquitoes,
in the sense that fitness is probably reduced because
larval habitats are water storage containers where
crowding, i.e., high densities, can occur (Scott et al.,
2000; Schneider et al.,, 2004). This, in turn, may

increase mosquito sensitivity to small changes in max-
imum temperature. Under crowding, it has been
described that Ae. aegypti larvae are smaller and more
sensitive to changes in the abundance of resources
(Wada, 1965), and larval mortality increases at
extreme temperatures (Bar-Zeev, 1958a). Following a
massive mortality event in the larval population, trig-
gered by high temperatures, population growth rate
will increase and mosquito abundance can be
expected to peak in subsequent weeks in an explosive,
or over-compensatory way, as expected in a reactive
population returning to its stable equilibrium. The lag
of 10 weeks probably reflects that population build-up
spans a few mosquito generations. This biologic mech-
anism also explains the nonstationary association with
maximum temperature depicted by the wavelet analy-
sis, which can increase mortality at high temperatures
(Bar-Zeev, 1958a; Bar-Zeev, 1958b). In contrast, in
Puerto Rico, the practical absence of a dry season
releases mosquitoes from the need to colonize stable
habitats, and the potential cost of intra-specific interac-
tions is replaced by one of dynamic habitats associ-

© 2011 Blackwell Publishing Ltd, Global Change Biology, doi: 10.1111/j.1365-2486.2011.02522.x
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Fig. 5 Reactivity for the Gompertz model as function of the parameters p (juvenile survival) and A (fecundity). Reactivity surfaces were
constructed for the 95% confidence limits of the parameter /' (x-axis, where A'=p/) and values of p between 0.2 and 1 (y-axis). Contour
lines indicate the values of reactivity (9) for the different combinations of p and 4, for a given 5", from the autonomous Gompertz mod-
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surface at the /’ estimates for the best autonomous and forced models of Puerto Rico (e) and Thailand (f). In the panels, J estimates (see
Table 1) for the autonomous and forced models are indicated by dotted lines and dashed lines, respectively.

ated with rainfall. For example, in Puerto Rico, a large
decrease in mosquito density at the beginning of the
observations reflects the fact that Ae. aegypti females
oviposit their eggs just above the water line in larval
habitats (i.e., containers) and egg hatching is triggered
by submersion in water or the high humidity that can
be associated with rainfall (Reiter, 2007). Thus, a
sequence of rainfall followed by lack of rainfall can
drive sharp decreases in mosquito populations as
observed in Puerto Rico.

This pattern, where populations present an increased
sensitivity to small changes in factors other than those
where their tolerance limits are constantly challenged
was first described by Schmalhausen (1949). Schmal-
hausen’s law asserts increased sensitivity by organisms
to environmental factors that go beyond their normal
variability when stressed by the fluctuations along their
tolerance limits in any other dimension of existence
(Chaves & Koenraadt, 2010). Schmalhausen’s law may
be a guiding biologic principle that can be used to pre-

© 2011 Blackwell Publishing Ltd, Global Change Biology, doi: 10.1111/j.1365-2486.2011.02522.x
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dict the most likely factors that explain climatic forcing
in population dynamics, or the differences in patterns
of association between environmental forces and abun-
dance for the same species across different ecosystems.
This principle is of major relevance in light of associa-
tion between climate and vector-borne diseases, one of
the major problems affecting humans and other organ-
isms worldwide. In this sense, limitations of this study
open venues for new research questions. Our focus on
a relatively short span of climatic variability leads to
questions on whether mosquito population responses
are equal in abnormal years, such as those when El
Nifno Southern Oscillation modifies weather patterns in
a way that generates climatic signatures on Dengue
transmission dynamics (Thai et al., 2010). More gener-
ally, whether population responses to forcing are con-
text-dependent in light of seasonality. For example, the
increased sensitivity to extreme temperatures in Thai-
land can be related to the existence of a dry and wet
season, something not observed in Puerto Rico.
Although climatic variability seems to underlie sharp
changes in the population density of Ae. aegypti in both
sites density dependence can be described with func-
tions of similar shape. The concave slope of the recruit-
ment function, implied by 6, can explain the quick
recovery of the populations (Sibly et al., 2005) and the
transient duration of population outbreaks. This is a
pattern common to mosquito species elsewhere (Yang
et al., 2008a). Another noteworthy result is reactivity
independent of climatic forcing. From a biologic per-
spective, it is important to notice that reactivity could
reflect life-history trade-offs in mosquitoes. Although
our model was limited in the sense that we could not
estimate fecundity (1) and larval survival (p) separately,
the possibility that these parameters could be con-
strained to a fixed value (Stearns, 2000) implies that
both parameters could trade-off and that large 4 and
low p lead to a reactive behavior as part of the life his-
tory strategy of Ae. aegypti. In both Thailand and Puerto
Rico, the region of reactivity is slightly reduced when
the forcing is considered explicitly, the population
could be reactive to small perturbations in various
combinations of juvenile survival and adult fecundity.
These results are important in light of apocalyptic
predictions about the impacts of climate change on vec-
tor-borne diseases based on models that do not reflect
the biology of vectors and that do not use data to vali-
date findings (Rogers & Randolph, 2000). The popula-
tions we studied are so tightly regulated that
predictions of linear impacts of global warming on the
abundance of mosquitoes, and the pathogens they
transmit, such as those claiming that mosquito abun-
dance and disease incidence will increase everywhere
with warming temperatures, do not reflect mosquito

population dynamics, nor that dynamics can be influ-
enced by vector control programs (Gubler, 1989; Wilson
et al., 1990). However, as demonstrated by this study
(which is validated by high-quality data), dynamics of
Ae. aegypti populations outbreaks are strongly linked to
extraordinary climatic events, highlighting the need for
further studies on the relationship between insect vec-
tors of disease and climatic variability to make more
accurate predictions about the impacts of climate
change on insect vector population dynamics.

Detailed studies on insect vector and pest population
dynamics in changing environments will similarly
increase understanding of evolutionary changes that
these populations may undergo in face of warming
trends. Whether increases in climatic trends or variabil-
ity change the ecological response of ectothermic organ-
isms to changing environments is an overarching
question in evolutionary ecology. Phenotypic plasticity
could evolve in different directions depending on the
tolerance to environmental gradients (Gabriel et al.,
2005). Changes in plasticity can modify traits that
impact population dynamics and the ecosystem func-
tion of organisms (Gause, 1942; Schmalhausen, 1949;
Levins, 1968; Gabriel et al., 2005). For example, the can-
alization of environmental variability in Ae. aegypti
body size is relevant to both vector competence for den-
gue virus (Schneider et al., 2007) and to mosquito fit-
ness (Bar-Zeev, 1957). In-depth research and analysis of
organism-environment interactions is a pre-requisite
for evidence-based decision and policy-making related
to surveillance and suppression of vector-borne dis-
eases in light of climate change.
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Supporting Information
Additional Supporting Information may be found in the online version of this article:

Appendix S1. Detailed methods.

Table S1. Model selection. Study site indicates the study site (Puerto Rico or Thailand), Model indicates the density-dependence
model (Beverton-Holt, Gompertz or Ricker), Stochasticity indicates whether the model had Observation or Environmental stochastic-
ity, Form indicates whether covariates were considered linearly (Linear) or nonlinearly (Threshold, etc.), — loglik is the negative log-
likelihood of the model, Parameters is the number of parameters consider by the model, AIC is the Akaike Information criterion for
the models, BIC the Bayes information criterion for the model, and AAIC & ABIC the difference with respect to the minimum value.
Figure S1. Seasonality of the studied periods and background seasonality. Rainfall in (a) Puerto Rico, (b) Thailand, Temperature
range in (c) Puerto Rico, (d) Thailand. Boxplots represent the seasonal distribution of climatic variables (estimated with data from
1951 to 2011). Blue and red lines represent the records from our study periods for rainfall and temperature range, respectively. For
the estimates, we used freely available monthly data from the US National Oceanic and Atmospheric Administration, NOAA
(ftp:/ /ftp.ncdc.noaa.gov/pub/data/ghen/v2/) for San Juan, Puerto Rico (Station 435785260), and for Thailand, we used data from
Bangkok (Station 228484550, the closest location to Chachoengsao with long climatic records). For Thailand, it is worth noticing that
temperature data from 1972 to 1995 were missing, the time period including the study period at Chachoengsao (1990-1993). In gen-
eral, climatic patterns for our study periods were encompassed by the overall seasonal variability of the study sites. However, Feb-
ruary & March 1993 in Puerto Rico, and March & April in 1992 in Thailand had an extreme temperature range when compared
with their long-term seasonal profile.

Figure S2. Time domain descriptive analysis of mosquito density N;. Autocorrelation Function, ACF, for Puerto Rico (a) and Thai-
land (c); Partial Autocorrelation Function, PACF, for Puerto Rico (b) and Thailand (d); Cross correlation functions between N; and:
rainfall in Puerto Rico (e) and Thailand (g) Average temperature in Puerto Rico (f) and Thailand (h); maximum temperature in
Puerto Rico (i) and Thailand (k), and minimum temperature in Puerto Rico (j) and Thailand (1). Blue dashed lines indicate 95% con-
fidence intervals of correlation expected by random, i.e., peaks outside the band indicate a significant correlation. The x-axis indi-
cates time lags (in weeks) and the y-axis are correlation values [i.e., contained in (—1,1)].

Figure S3. Time frequency domain descriptive analysis. Cross-wavelet coherency and phase of mosquito abundance in Puerto Rico
with (a) rainfall, (b) average temperature, (c) maximum temperature, and (d) minimum temperature; and in Thailand with (e) rain-
fall, (f) average temperature, (g) maximum temperature, and (h) minimum temperature. In each panel, the top plot shows coher-
ency and the bottom plot shows the phase. The coherency scale is from zero (blue) to one (red). Red regions in the upper part of the
plots indicate frequencies and times for which the two series share variability. The cone of influence (within which results are not
influenced by the edges of the data) and the significant (P < 0.05) coherent time—frequency regions are indicated by solid lines. The
colors in the phase plots correspond to different lags between the variability in the two series for a given time and frequency, mea-
sured in angles from —PI to PI. A value of PI corresponds to a lag of 26 weeks. A smoothing window of 26 weeks (2 w + 1 = 53)
was used to compute the cross-wavelet coherence.

Figure S4. Model fitting, fitted N; vs observed N; mosquito densities for the best autonomous models for Puerto Rico (a) and Thai-
land (b) and the best forced models for Puerto Rico (c) and Thailand (d). 7 indicates the estimated Pearson correlation between N
and N; for the model presented in each panel.

Figure S5. Model Simulation. Summary of 1000 simulations for the best autonomous models for Puerto Rico (a) and Thailand (b),
and the best forced models for Puerto Rico (c) and Thailand (d). For all the iterations (a.k.a., time steps) of each model, we com-
puted the 95% confidence limits (blue lines) and the median (green lines) of the simulations. Red lines represent sample simula-
tions. Open circles represent the population density (i.e., observed data) in panels for autonomous models (i.e., a and b) and the
population density with the forcing subtracted (DFR in Fig. 3 of the main text) in panels for forced models (i.e., ¢ and d). In the
forced models, we show DFR, because for the simulations, we excluded the impact of the forcing. For the simulations, we employed
parameter estimates from Table 1 and equation (1) from the main text to generate realizations of the best autonomous and forced
models. We used as initial conditions, the first and second observations of the observed time series for the Puerto Rico models (107
realizations per simulation) and observations nine and 10 of the observed time series for the Thailand models (143 realizations per
simulation). This figure shows that, in general, simulations of the autonomous models were unable to capture the most extreme val-
ues of the observed data.

Figure S6. Bootstrap of the stability. Parametric bootstraps to test the stability of the Gompertz model with parameter estimates for
the best autonomous (i.e., no forcing) models of (a) Puerto Rico, (b) Thailand, and the best forced models of (c) Puerto Rico and (d)
Thailand. Plots present the distribution of the largest eigenvalues (£) from the jacobian of 10 000 simulations of the corresponding
Gompertz model assuming neutral stability (i.e., the distribution is expected to have a mean of 1). The y-axis is the probability den-
sity for a given value of £, i.e., the x-axis. The dashed lines represent the estimated dominant eigenvalues ¢ of the jacobian evaluated
at the nontrivial equilibrium using parameter estimates of the best models presented in Table 1. In all four cases, the null hypothesis
that stability is neutral (i.e., not different from 1) is rejected (P<0.05, P-values for the specific models are presented in each panel), as
¢ is significantly smaller than 1 in each case. These results indicate that models are stable, because the largest eigenvalue for each
model is contained within the unit circle, the stability criterion for discrete time models (Levins & Wilson, 1980).

Please note: Wiley-Blackwell are not responsible for the content or functionality of any supporting materials supplied by the
authors. Any queries (other than missing material) should be directed to the corresponding author for the article.

© 2011 Blackwell Publishing Ltd, Global Change Biology, doi: 10.1111/j.1365-2486.2011.02522.x



Appendix: Detailed Methods
Descriptive Time Series Analysis

We examined the correlation structure of the mosquito time series by using standard techniques for
time series analysis. These included the autocorrelation function, ACF, which is the correlation of the
elements in a time series through several time lags. The partial autocorrelation function, PACF, which
considers the correlation between consecutive time lags (not the whole time series like the ACF) and the
Cross correlation function, CCF, which presents the correlation between two time series across time
lags (Shumway et al., 2000). To compute the CCF, we used the pre-whitened residuals (Chaves, 2009) of
the climatic time series (rainfall and mean, minimum, maximum temperature) and the residuals of a
second order autoregressive model, AR(2), fitted to each mosquito time series. The pre-whitening
consists of filtering the climatic time series with the estimated coefficients of the AR(2) model fitted to
the mosquito abundance time series. This process ensures that correlations are not spurious results of
similar autocorrelation structures in the two time series (Chaves, 2009). All these preliminary analyses
are in the time domain, which for the cross-correlation analysis assumes that associations are constant
over time. However, associations between time series can be very localized in time, producing a non-
stationary (i.e., non-constant) association through time (Cazelles et al., 2007). Thus, we also studied the
association between the climatic time series and the mosquito abundance series using cross-wavelet
analysis (Cazelles et al., 2007). This analysis allowed us to determine how the association between the
two time series changed over time at different periods (i.e., non-stationarity). The cross-wavelet
coherency analysis shows the frequencies at which the two times series have high power, an indicator
of concerted fluctuations, and the cross-wavelet phase analysis shows the time lag separating the
association between the two series. For further technical details of cross-wavelet analysis, see Cazelles
et al (2007)

Models

Delayed Ricker Model

This model assumes that adult mosquito population (N;) is described by the following equation:

N = AN;_1exp (—bN;_;) (1)

The delayed Ricker model comes from the integration, assuming a constant per capita growth rate for a
discrete time interval (Turchin, 2003), of the delayed logistic equation (Hutchinson, 1948):

dN(t) _ N(@-D)

LD =N (1-72) (2)
where K is the carrying capacity of a population, r the per-capita growth rate and tis the time delay in

which density impact population growth. Therefore the parameter A represents the population growth
rate in discrete time (exp(r)) and b is the inverse of K.



Delayed Beverton-Holt and Gompertz Models

We can consider that individuals in an adult mosquito population (N;) at time t come from the surviving
adults (N;.;) and the recruitment from emerging juvenile individuals (J.;) in the previous time step, t-1,
as described by the function H(N,J):

N¢=H(N¢y, -It-l) (3)
Ni=sNei+p Jes

Where s is the per-capita survival rate of adults and p is the per-capita emerging probability of juveniles.
Equation (3) assumes that juveniles either emerge as adults, with probability p, or die, with probability
1-p, after one time step. For weekly data this is an appropriate assumption, the pre-imaginal
developmental time of Aedes aegypti averages a week (Headlee, 1940, Headlee, 1941, Bar-Zeev, 1958b)
under the temperatures experienced in Puerto Rico and Thailand. Experiments and observations suggest
that the density-dependence regulation of Aedes aegypti (Legros et al., 2009, Dye, 1984, Gilpin et al.,
1979) occurs primarily during the immature stages. Assuming that density-dependence can be
represented by a function G(N) that describes the regulatory processes acting upon the production of
juveniles (i.e., larvae and eggs), we have:

It =G(Nt—1) (4)

In Aedes aegypti larval density does not seem to affect adult emergence success when resources are
unlimited (Dye, 1982, Wada, 1965, Barbosa et al., 1972, Bar-Zeev, 1957). However, emerging individuals
are shorter and less fecund (Briegel et al., 2002, Bar-Zeev, 1957). Thus, if we assume that fecundity
decreases with adult density, when larval mortality is constant, a carrying capacity (1/b) emerges which
can be represented by a Beverton-Holt function(Turchin, 2003):

] zh
t ™ 14bNe,

(5)

Where A can have a similar interpretation as in equation (2) or alternatively can be seen as a per capita
fecundity. Alternatively, the carrying capacity (1/b) can emerge if the mortality of immatures increases
with adult density under a constant fecundity, or if both fecundity and mortality are density-dependent.
Equation 3 can be written as function of adults mosquitoes in any stage by substituting equation 5:

ANg_
Ne = sNe—1 +p (1+b1tv:_2) (6)

For the Gompertz model (Sibly et al., 2005) a phenomenological exponent 8, whose value is constrained

in (0,1), is used for the function G(N) so that J; = ANte_l, resulting in the following equation:

N; = sN;_; + p(ANE.,) (7)



Stochasticity in the models

We made two assumptions about stochasticity in models (1), (6) and (7). First, we assumed that all
models had an additive observation normal error (Bolker, 2008). Under this assumption observations
(ny), i.e., the left side of equations (1), (6) and (7) for each time step, t, are considered to be normal,
i.e., ng~N(Ng, agbs). Second, we assumed the presence of environmental stochasticity, which is defined
as perturbations affecting all individuals in a population at a given time (Mangel, 2006). Under this
assumption, the left and right hand side of equations (1), (6) and (7) are log-transformed (Dennis et al.,
1994), and the resulting left hand side of the equation, z;, is assumed to be normal, i.e.,

ZtNN(lOg (Nt)' Ueaznvs)-
Exogenous forcing in the models

Following results from the descriptive time series analysis, i.e., the cross-correlation and cross-wavelet
analyses, it was clear that mosquito population dynamics were primarily influenced by rainfall in Puerto
Rico and by maximum temperature in Thailand. In the case of Puerto Rico, Environmental Covariates
(EC), included total rainfall (R) and the weekly difference in rainfall (AR), with a one week lag. We
included the difference in rainfall because both habitat dynamics and egg hatching in Aedes aegypti are
sensitive both to the quantity of water and its relative change, e.g., eggs hatch after flooded with water
(Gilpin et al., 1979, Christophers, 1960). For Thailand, ECs included maximum temperature with 10
(T¢_10) weeks of lag. Also since impacts of temperature in insects can be cumulative (Taylor, 1981,
Taylor, 1982) we included the summation of average temperatures up to lag 10 (CT;_q,). To testif
impacts of temperature were due to its variability, we also included measures of its cumulative
variability by computing the first principal component from a matrix of lagged average temperatures,
including the previous 10 (PCT;_4,) weeks. The first principal component was computed by applying the
coefficients from the eigenvector associated with the dominant eigenvalue of the variance covariance
matrix of the lagged temperatures.

To include the effects of the environmental forcing, we defined three different functions, EXO(), which
were added to the stochastic versions of the three density-dependent models in equations (1, 6 & 7).
The first function was a simple linear one:

EXO(EC,) = aEC, (8)

Where the coefficient &« measures the impact of changes in the EC. The second function was a threshold
function defined as:

EXO(EC,) = {0 if EC, <EC, o)

a(EC, — EC,) if EC, = EC,

Where there is an environmental impact only when the EC exceeds a threshold value (EC,.) measured by
the coefficient a. The third function was a saturating hyperbolic function, also known in ecology as a
Holling Type I, where the impact of rainfall (or its difference) reaches a saturating level for high values:



(XECt

(10)

In Puerto Rico, the three functions (8, 9 and 10) were used with EC=R or EC=AR. In Thailand, the function
presented in (8) was used with EC=T or EC= CT or EC=PCT, and the function described in (9) with EC=T.

Although N; was correlated with both average and maximum Temperature (Fig. S1H, S1K), we only show
the results for maximum temperature because the likelihoods for most models were minimized with
maximum temperature (including the best models), there was a clear threshold for the impact of
temperature on the Thai N; (Fig. 2D), the use of the threshold function was able to depict the
nonstationary pattern of association between the Thai N; and maximum Temperature (Fig. S2G and Fig.
3D) and there is a plausible biological mechanism for the observation: extreme temperatures increase
the mortality of Aedes aegypti (Bar-Zeev, 1958a), which is known to at least alleviate density-
dependence in this species (Wilson et al., 1990, Wada, 1965).

Models considered the two possible pathways proposed by Stenseth et al (2002) to quantify the role of
exogenous forcing on density-dependent population dynamics. First, the forcing is additive to the
density-dependent dynamics (DDM):

N, = DDM + EXO (11)
Or the forcing can impact multiplicatively population density:

N; = (DDM)(EXO) (12)
Maximum Likelihood Estimation

Observation error

We assumed data with a normal distribution, N(Ntla,agbs) , whose likelihood (Ly,) can be expressed as:
Ly, (@) = IIi f(n¢la) (13)

Where N, is a normal random variable whose observed mean (n; ) is determined by a vector of
parameters a, 0%, is the variance of the random variable, t the length of the time series and fis the
normal probability function. Then, the log-likelihood is:

InLy, (@) = £ Inf (nla) (14)

Given the non-linearity of the equations (1), (6) and (7) no exact solution for the maximization of the
parameters likelihood can be found analytically and numerical approximations need to be used. Thus for
parameter estimation of the model presented in (1) the variance is minimized by the following equation:

.2
9 obs = %Zi(nt — An;_y exp(=bn,_»))* (o)

Given the multiplication of parameters in equations (6) and (7) Ap = A'. Therefore for parameter
estimation of equation (6) the following variance is minimized numerically:



2
2
G ps = %Zﬁ <nt —snp_; —A' (£)> (16)

1+bnt_2

And this expression for equation (7):

A2 1 2
o = ?Zi(nt —SNg_q — A’nf—z) (17)

obs
When the exogenous forcing (EXO) was included in an additive manner, the following equation for the
variance was minimized:

~ 2 1
C)—obs_?

Yt (n; — DDM — EX0)? (18)

Where DDM is the right hand side of equations for any of the three density —dependent models
presented in (1), (6) and (7). When the exogenous forcing was considered in a multiplicative manner,
the following equation for the variance was minimized:

~ 2 1
C)—obs_?

Yi(n, — DDM*EX0)? (19)
Environmental error

Here, we that assumed log transformed mosquito abundance, z,=log(N;), had a normal distribution,
N(z:|a, 62,,s) , whose likelihood (Liog (n,)) can be expressed as follows:

Llog (Ng) (a) = HtiL f(z¢la) (20)

Where a, f and 62,,,c have a similar interpretation to the case of observation error (see equation 13),
the only difference being that 62, is environmental variability. Parameters for equations (1), (6) and
(7) where obtained by minimizing the following equation:
A2 1
G onps = 7 21(2¢ — log (DDM))? (21)
DDM is the right hand side of each density—dependent model presented in (1), (6) and (7). To consider
the forcing we assumed that it was additive:

2
6. =2¥t(z, —log (DDM + EX0))? (22)

envs t
And multiplicative:

2 1
envs ¢

6 Yt(z, —log(DDM) — log (EX0))? (23)

Optimization

For the numerical optimization, we used a combined strategy, in which, initial parameter estimates
were obtained by a global optimization using 1x108 iterations of simulated annealing, and the initial
estimates were further optimized by using the Nelder-Mead algorithm until convergence. Parameter



estimation was performed with the open-access statistical language R using the stats, base and bbmle
libraries (Bolker, 2008)

Likelihood for Model Selection

Log transformation of time series data render their log-likelihood smaller than that of untransformed
data (Chaves, 2009). To make a sound comparison between observational and environmental noise
models we back-transformed the likelihood of models with environmental variability. Since data was
log-transformed, the sum of the log-transformed original time series needs to be added to the log-
likelihood obtained with equations (21), (22) and (23). For further details see the appendix of Chaves
(2009)

Stability and reactivity analysis of the model with the best fit

Stability analysis is performed to set the conditions that allow a population to persist or invade a habitat
(Levins et al., 1980). For both study sites the best model for density-dependence was the delayed
Gompertz model (7). The model can also be seen as a two stage class model according to equations (3)
and (4):

(:)=Goy o)) 24)
Where A = (A(S)g g) is the model transition matrix.

The stability of (24) was studied by first finding its equilibria. The model reaches an equilibrium (N*,J*)
when there are no changes over time :

(7) =A (1]\/) (25)

The trivial equilibrium is:
(N*<0, J*=0) (26)

and the non-trivial equilibrium is:

<N* _ (ﬂ)1/(1—9) = A(ﬂ)e/(1_9)> (27)

1-s 1-s

To examine the stability of the equilibria, we computed the jacobian (¢) of the system presented in (24):
oM oH

_fan a5 _ s p
?=loc ac ‘(Ae(zv)w-l) o) (28)
aN 9J



Where H(N,J) and G(N) are functions defined in (3) and (4). We evaluated the jacobian at equilibrium
(@*), that is when N = N* and determined the dominant eigenvalues from its characteristic equation
det(p* — &1)=0:

§2 —s& —pAON*Y = ¢ (29)

Which led to the following expression for the eigenvalues ():

For the trivial equilibrium, (26), the system is always unstable since, given the constraint of 6 to be

within the open interval (0,1), N*(@-D converges to values outside the unit circle, where a discrete
time system of equations is unstable, i.e., |§| > 1 (Levins et al., 1980). For the non-trivial equilibrium,

equation (27), the dominant eigenvalue is:

S

£=34 () +oa-2 )

Where the system is stable, i.e., |§| < 1 (Levins et al., 1980), as long as:

N

2 S
(5) +0(1-s)<1-3 (32)
Which after some algebra simplifies to the following relationship:
<1 (33)

Which is always true, provided that 0 < 8 < 1, i.e., that there is density-dependent regulation in the
system. The condition for asymptotic stability of the model presented in (33) also implies that the
system cannot undergo neither fold (a.k.a., tangent) nor flip (a.k.a., period doubling) bifurcations, as
they will require a value of 8 > 1 (Kuznetsov, 2004). Neimark-Sacker bifurcation, the discrete time
analog of the Hopf bifurcation, is also not possible for the parameter set of biological sound models,
since survival is smaller or equal to one by definition, i.e., s < 1. This parameter constraint renders
complex solutions to equation (31) impossible, a necessary condition of the Neimark-Sacker bifurcation
(Kuznetsov, 2004).

Significance of the estimated stability ()

To test the significance of the estimated stability (f), we performed parametric bootstraps. For f we
assumed neutral-stability as the null hypothesis (= 1). The alternative hypotheses are instability (£> 1)
or asymptotic stability (§< 1). A parametric distribution of & was generated by simulating equation (7)
with environmental noise 10000 times. Then, we compared the estimated ¢ to the distribution of &
under the null hypothesis. To generate a parametric distribution of & we used the recipe presented by
Neubert et al (2009) in which equation (28) is simulated in a way that produces 1 as the average largest



eigenvalue. We tested the significance of the stability for the model presented in (7) using parameter
estimates obtained both with and without the consideration of the exogenous forcing for each study
site.

Reactivity is the maximum instantaneous growth rate of a small perturbation to a system (Caswell et al.,
2005). It also can be used as an index of transient behavior in the sense that a positive value predicts a
transient, i.e., quick, amplification of a perturbation around an equilibrium (Neubert et al., 2009). To
compute reactivity (v) we used the equation derived by Caswell and Neubert (2005) for discrete time
systems:

v = logg(¢) (34)

Where ¢ is the largest singular value, a.k.a. spectral norm (Verdy et al., 2008) of the jacobian matrix, ¢,
presented in equation (28). Equation (34) also has the bonus of being a general result that predicts the
reactivity of a system even in the absence of a thorough sampling of initial perturbations (Caswell and
Neubert, 2005), an advantage over tracking the amplification of perturbations of different size by
repeated model iteration.

We pursued the reactivity analysis because it can provide insights on the role that stage structure can
have on mosquito population outbreaks. The derivation of the best model, delayed Gompertz, as both a
discrete time equation in (7) and a stage structured matrix in (24), shows that I’ = Ap. The emergence
probability of immatures, p, is, by definition, constrained to the interval [0,1]. Thus, given a value of A’

and a value of p is possible to find a value for 4 = %. This estimated A can be imputed into equation (28)

to compute the reactivity of the Gompertz model for combinations of A'and p using equation (34).
Perturbation analysis

We studied the response of the model selected as best to changes in parameter values, a.k.a.
perturbation analysis. We used the two most common metrics to measure the impacts of changes in
parameters in population dynamics, sensitivity which measures the total change in a response function
(e.g., the population size at equilibrium) to changes in a parameter, and elasticity which measures the
proportional change in a response function to changes in a parameter (Caswell, 2008). To Compute the
sensitivity we used the following equation derived by Caswell (2008):

dN
dw

ONT

dvecA
dwT

. -1
7= (AN TR BE) (N el (35)

Where N* is a 2x1 vector with the equilibrium for the adult population (N*), w is a vector of parameters
w =(s,A’, 8), where 1’ = pA. A'is the projection matrix presented in equation (24). In the case of the
model presented in (7) equation (35) reduces to:

W (1-s— OOV ( (36)

dwT

N* 0 0 )
0 (NHO Nn(N*)(N*)®



To compute the elasticity, e, of the equilibrium population, N*, to changes in the parameter w; we used
the following equation presented by Caswell (2008):

o = ©i daN”
S dw;T

(37)

We computed the sensitivity and elasticity of the non-trivial equilibrium for the model presented in (7)
with environmental noise, and using parameter estimates both with and without the consideration of
the exogenous forcing for both study sites.
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