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PROPOSITIONAL CALCULUS AND BINARY CALCULUS

Osvaldo Skliar and Victor Medina
Universidad Nacional, Heredia, Costa Rica.

Abstract

We present an efficient method of propositional calculus which allows the manipu-
iation of logical functions with an arbitrary naumber of propositional variables. This
method is based on the use of binary sequences (in other words, sequences of digits
which can only be either 0 or 1) and certain operations between them. This calculus
is then implemented by using neural network type devices.

1 Introduction

The objective of this paper is to preseut a new operative approach for propositional cal-
culus. This is based on the establishment of certain correspondences between:

1. Logical functions and natural numbers expressed in base 2, and

2. Operations carried out on logical fanctions and those numbers considered as “binary
chains® (i.e. sequences of digits each of which can only be either 0 or 1).

Let f{ 21, 22, ... ,2n) be a logical propositional function of n logical propositional
variables z;, 2;,...,2,. Each of this n propositional varibles can be replaced by a
proposition. We accept that one of two possible truth values can correspond to each
proposition, so each proposition is considered either true or false, and if a proposition is
replaced by a false proposition, it will be indicated by substituting it with the oumber
0. Conversely, if it is replaced by a true proposition, it will be identified by the number
1. By specifying any given one of the 22" existing logical functions of n propositional
varibles we mean to establish the truth value for the Jogical function in question for
each possible choice of truth values for the propositions which replace the propositional
variables (which is usually done by using a truth table). This can also be accomplished
by using an algorithm which allows the logical function’s truth value to be established for
each choice to which reference was made. To ilustrate this, a truth table for one of the
16 existing logical functions of two propositional variables is shown below. Note that the
various choices of truth values for the propositional varibles are indicated by using the
conventional 0 for “false”, and 1 for “true®.

'It is common to designate as *proposition” the logical function f{#1, £3, ... ,#a ). This nomenchture,
while admissible for reasons of brevity for those who aiready have a clear undertanding of the basic concepta
iavolved, is a0t corzect in  stxict semse. Actually, a proposition can oaly be obtained from a
fuaction by substituting each logical propositional variable with & proposition or by “limking” i wsing a
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Notice in Figure 1 that in two cases - one in which both propositional variables
(21, #2) have been replaced by false propositions, and the other in which both have been
replaced by true propoeitions — the “true” value was assigned to the logical function. This
example is referred to as the “equivalence” logical function of z; and zy ( f{®,22) =
2~ 23).
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Figure 1

A system of orthogonal axes of coordinates can be introduced where each axis corres-
ponds to one of the propositional variables. For each corresponding propositional variable,
two values (0 or 1) are possible on each axis.

How can the logical function specified in the truth table in Figure 1 be shown geo-
metrically? One poszibility is to draw a small black circle on each point of the cartesian
plane shown in Figure 2, that correspond to the truth values of the propositions by which
the propositional variables are replaced so that the logical function under consideration
assumes the truth value “true” (Figure 3).

22 23
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Figure 2 Figure 3

It is obvious from a conceptual point of view that we can generalize this approach
to be used in the case of n propoeitional variables. In order to geometrically define one
of the existing 23" logical functions, a given subset of the existing 23" must be chosen.
This subeet is comprised of the n-dimensional space’s 2™ points that correspond to the
2" different possible choices of truth values for those propositions that replace each of
the n propositional variables {each of these choices is defined in the corresponding rows
of the proper truth table). Let us denote by Ry the subset of points corresponding to
the logical function f and let us call it the regson of validity of f. The conjunction of
two logical functions is a logical function whose validity region is the intersection of the
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validity regions of the two operands. The validity region for the disjunction of two logical
functions, on the other hand, is the union of the validity regions of its operands. So, for
instance, if f(21,22) = 21 A 22,2 we obtain R, as shown in Figure 4.

5] L) 2
X ] ]
i . (11) 1 T 0,1) o (1,1) b . (L1)
{1,0)
-+ - I % - I % - X1
0 1 0 1 0 1

Rﬂ = {(1!0)’(1!1)} Rsy = {(orl)silsl)} 2)' = Ry, N Rey = {((lsl)}

Moreover, observe that R, determines the truth table for f. So for the previous
example we get: :

2z flz,m) =2 A5

0 0 0

0 1 0

1 0 0

1 1 1
Figure §

Conversely, given the truth table of any logical function f, we can determine R;. To
ilustrate this, let us look at the truth table for the function f{2,,22) = z; +» z;,
shown in Figure 1. The validity region in Figure 3 is obtained from this table (Figure
1); thatis Ry, —u, = {{0,0)(1,1)} . Also note that a geometrical analysis of the region
R; produces other equivalent ways to write the function f . So it clearly follows that
from Figure 3:

5 on
flz1,22) = { (21 A 22} V (~2y A ~2)
{(~mAm)V(21A-2)})

Notice that two logical functions f and g are equivalent if, and only if, R; = R,.
Likewise, f — ¢ if, and anly if Ry C R,.

We should point ot here that z; can be considered either a logical variable or a logical function
whose truth table, in the case of two propeitional variables’ Jogical functions, is the following:

2 | f(#1,23) = =
[1]

- o oW
—— ey o)

1
[}
1
The same can be done for #s.
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It is clear that in this traditional geometric approach 0 and 1 are used only for the
purpose of differentiating two points on each axis of coordinates. Therefore 0 and 1 can
be changed to any pair of numbers a and b as long as a # .

At this point we will develop a closer tie between propositional calculus and numeric
binary calculus. Those interested in an alternative geometric approach to propositional
calculus should lock, for instance, at [ 1 ]. It is oriented towards simplifying the compu-
tation of the truth value for logical functions of a small number of variables.

‘2 Binary Approach to Propositional Calculus
We deﬁne the operation of disjunction on binary digits (each of which can be either 0 or

1) a8
iVj=max {ij},
or if preferred, by the following matrix:

\4
0
1

= D] D
L

The operation of conjunction, applied to the same operands is defined by:
tAj=min {i,5},

or if preferred, by the matrix:

AlO 1

010

110 1
The operation of negation or “inversion” is defined by:

~{=1-9,
or by the following one—column matrix:
1 '0

Let us extend these operations to binary chains with the same number of digits by working
on them digit by digit. So, let a and § be two binary chains comprised of n digits, each
one being:

(_u:; ) where 3 € {0, 1},[01’:212 n,md
= ( 1‘:3 . kn ) where k; € {0,1},fori = N %

aVb (.‘Mz i)V (kiks . ky)
= (AVE BVE ... 5aVkn)
eaAb =(n5n.. Jn)f\(hh  kn)
= (nAh nAk ...:‘..Akn)

- We have:
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K f(21,...,2a) is a logical function of n logical variables, there are 27 different
ways of assigning truth values (0 or 1) to the variables 2;,...,2,. We order these
assignments according to the usual ordering of numbers with n binary digits. Thus for
each assignment of the values of the variables z;, ..., 2,, f will have a value of either
0 or 1, thus generating an ordered sequence of 2 binary digits which completely define
the function f. So we can identify f(z;, 22} = 2; — 22 with the binary sequence
(1101) because its truth table is:

zy 2|3 — 2

0 0 i

0 1 1

1 0 0

1 1 1
Figure 6

Moreover, it follows that for each sequence (4y ... 82+ ) of 2" binary digits, there is a
corresponding logical function f, which is determined by the truth table:

21 23 ... 2| f
0 0 ... 0]
0 0 118
1 1 ... 1|60

We denote £ as the set formed by the 22" logical functions of n variables. These
logical functions are identified by the 22" bmar{ sequences of 2® digits. Since each
sequence determines a binary number, we order £!®) according to common oredering for
such binary numbers. So we can write:

£(“' = {fﬂ;fl, ,fg!"...]}

where fo = (0...00), f = (0...01), ... foar_; = (1...11).

In addition, we consider the logical connectives (V ,A ,~,— ,++) as operators defined
on £ | and consequently, we write « { f;, f; } instead of f; < f;, A{fi, f; } instead
of fi A fj, etc. The operator — acts on only one oprerand that can be any of the logical
functions. Either binary or unitary operations, can be performed using those operators
defined and closed in £, _

The disjunction operation of any m logical fanctions f;,,...,f,. of £®™ , which
is usually written a8 f;, V ... V f; . will be expressed as V{ f;,,...,f;,.} . Similarly,
their conjunction will be indicated by: A{fi,,..., fin } - We will also use the following
convention: an asterisk over an operator will indicate that the result of the operation on
the logical functions involved (which is also a logical function) depends on the order in
which operands are considered. For the operators considered in this paper, the asterisk
will only be needed with the operator of implication. Thus * f; implies f; ” is written
s = {fi,fi}.
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To illustrate, let us look at the operators A, V, and - on the elements of the set
£@ formed by the 16 two variables’ logical functions:

Jo = (0000) f, = (0100) fy = (1000} fiz = (1100
5 = (0001) fz = (0101) fo = (1001) fis = (1101
f2 = (0010) fo = (0110) fio = (1010) fiq = (1110)
fs = (0011) £ = (0111} fy; = (1011) fis = (1111)

Notice that as a consequence of the ordering of the set £ | f; = j};’l’ , where
jf._'.')) is the binary sequence of 2" digits corresponding to the decimal number 5. On the
other hand, the disjunction, conjunction, and negation operations on binary sequences (as
previously defined) correspond with the disjunction, conjunction, and negatiion operations
on £, For example,in £® :

V{fs, fu} = v{s{], 143}

v{(0101), (1110)} = (1111)

= 15[:; = Jus
M B, ha} = M5E), 1)) = A{(0101), (1110)} = (0100)
= 48 = fu
~{ %} = ~{5§)} = ~{(0101)} = (1020)

= 10{:{ = Jio
Generally, if f; and f;, are elements of £ | then:

V{fi fi} = V{t“g,:'?",’} =
M, i} = Milg i) = &
~{fi} = i} = £

where k, [, and r ace those decimal numbers that correspond to V{s{l), 583}, AGi{g), i63)),

and ~{ s{; }, respectively. In this way logical function calculus is reduced to simple binary
calculus. If, as is usually the case, the subindices that specify various logical functions are
expressed in base 10, then there must be changes from base 10 to base 2 and vice versa,
in order to use this binary calculus.

In addition, observe thatin £(*) each logical variable corresponds to a logical function.
Soim £3 | for instance, z; = (0011) = f3 and z; = (0101) = fy ,-and in general
z;,(s =1,...,n), considered as an element of ﬂ"ﬁ ,i8 f; , where 5 is the number
expressed in base 10 with the 2™ —digit binary expansion:

0..01...1...0...01...1)
=i gn-j 3-i  2e-f

2i
This is the sequence formed by 2*~/ “seros® followed by 2*~/ ones* and so on (%
times).
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We wil now describe how neural networks can be implemented to perform these ope-
rations.

8 Implementation of the Binary Approach Using Neural
Networks

The logical operations described above can be performed wsing neural net type devices
which are easily simulated on digital computers. When working with logical functions
(especially those with many variables?, it is quite convenient to automate the involved
calculations by using neural nets (see [2], and [3]).

Which are the general —structural and functional- characteristics that these neural
nets have? In other words: what is the neural net pattern from which all the neural nets
we will be dealing with can be considered as particular cases? To answer this question we
will first describe the model.

The McCulloch-Pitts formal neurons will be used. Each of these neurons is characte-
rised by:

1. the synaptic contacts that the various axon endings establish with it, and
2. a threshold for the “firing® of bioelectric pulses * quantified by an integer number.

Time is thought of as being made up of elementary lapses. During each of these lapses
a synaptic contact is either active or inactive. This depends on wether the axon making
contact shows bioelectric activity or not (the presence of a “bioelectric pulse” or not).

From now on, “1” will indicate either a truth value “true”® or the presence of a bioelec-
tric signal; “0” will indicate a truth value “false” or the absence of a bioelectrical signal.
Additionally, the activation of an excitatory synaptic contact will have a value of “+1”,
and the value of *~1" corresponds to the activation of an inhibitory synaptic contact.

H, and only if, the algebraic sum of all excitatory and inhibitory stimuli acting on a
given formal neuron in a given elementary lapee (e.g. in the t-lapse) is greater than or
equal to the threshold value, then the neuron will “fire®. In other words, it will generate
a bioelectric signal in the next lapse {the (2 + 1)-lapse). This signal is then carried by the
neuron’s axon (its output channel).

We should note thet with this approach the time it takes to carry the signal along the
nervous pathways is null or negligible compared to the “unit time® (clementary lapee).
The synaptic delay and the elaboration of the bioelectric activity that corresponds to the
next elementary lapse take place during such unit time. :

$The expresion *bivelectric palse” or “bicelectric signal® {the pkysiologists’ action poteatial) wsed in
this paper acknowledges the origin of the neural nets (or aewral networks) theory which came out of the
explanation for certain functional aspects of the aervous system. This also applics Lo the terms “axon’
(the output chanpel or oxit pathway of 3 neuron), “synaptic contact” aad “threshold”. In this paper, the
presance or absemce of a bioelectric pulse will be indicated by a *1* or a “0", respectively.
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° . w
a.) 5)

¢.)

——: Excitatory aynaptic contact
o : Inhibitory synaptic contact

Pigure 7

Note that the neuron shown in Figure 7a carries out the logical sum or disjunction
C(t + 1) = v{A(t}, B(t)}, snd the one in Figure 7b performs the logical product or
comjunction C(¢ + 1) = A{ A(t), B(¢)}.

A disjunction neuron with an arbitrary number of input chanmnels can be synthesized
as follows:

1. For each input channel that should be active (i.e. carries a bioelectric sign) in a given
elementary lapse in order to get a firing of the neuron in the next lapse, we assign
an excitatory synaptic contact. This contact is made between the input channel and
the neuron.

2. For each input channel that should remain inactive in a given elementary lapse in
order to get a firing of the neuron in the next Japse, we assign an inhibitory synaptic
contact between the channel and the neuron; and

3. The formal neuron threshold value equals the difference between 1 and the number
of inhibitory synaptic contacts for that neuron.

ey Qe
MmO QWmm™
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L ‘ 0,
Is

0y
L

Figure 10

To ilustrate, in Figure 8 we show a formal neuron which computes

F(t + l) = V{A(‘)i “‘B(‘)v G(t)’ _'D(‘)’ ﬂ‘(t)}

The same criteria outlined above for the disjunction neuron hold for a conjunction
neuron with an arbitrary number of input channels with one exception. This is that the
threshold value should equal the mumber of excitatory synaptic contacts.

Figure 9 shows a formal neuron which computes

G(t + 1) = A{A(¢), ~B(¢t), C(t), ~D(t}), ~E(t)}.

The disjunction (or conjunction) of n logical functions can always be determined by
first finding out the disjunction (or, respectively, conjunction) of any two of these functions.
Then, we find out the disjunction (resp., conjunction) between the result of this operation
and any of the ( ~ 2) remaining functions, and so on.

Figure 10 illustrates a neural net where the various connections have been established
in an arbitrary way. Notice the large mumber of possibilities, even with a few neurons.

Figure 11 is a general representation of a neural net with m input channels and n
output channels (m and n are positive integers). '
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' — 0
Input h Neural 0s Output
channels | Network . chaonels
Ly ~—— On

Figure 11

The input channels represent nerve fibres {(axons) which carry bioelectric signals, ge-
nerated somewhere outside the net. The net can emit bioelectric signals by means of its
output channels -the axons of some neurcns which belong to the net.

The question is: from a bioelectric point of view, what can happen in each input or
output channel during each elementary lapse? There are two possibilities: either there is
a presence or an abeence of a bioelectric signal.

To specify a configuration for the signals entering a neural net, means to establish the
presence or absence of a bioelectric signal for each input channel and for each lapse (from
the initial to the last). This also holds for the cutput channels.

Let us now return to our binary approach to the calculus of logical functions, We will
use as an example the functions V{2, ,22}, A{zy, , 22}, {21}, = {21, ,22} , and
e {25, ,22} of L@ . These functions can be computed using the neural nets previously
described. This is ilustrated in 12, 13, 14, 15, and 16, respectively.

It is exactly the same for L™ asin £?) . Thus, based an the neural net shown in
Figure 17 which computes C(t +1) =+ {A‘(t}, B(t)} , we can compute «~ {f;, f;}
for a given pair of functions f; and f; of L™ as shown in Figure 18; where f; =
(h hﬂ) ’ andj:, = “1 ves lzn) .

fr = V{z, 23} = (0111) h = A{z; ) m} = (0001)
Figure 12 Figure 13

52



UNICIENCIA

fiz = ~{z:} = (1100}
Figure 14

This procedure can be used as many times as desired. So, for example, to caleulate
the function:

=+ {V{f.’,—.i {,.i'sfl}}"'." {_'{A{L’fi}}’fl}}
we can use the procedure illustrated in Figures 194, b,¢,d, ¢ and f.

We should note here that most of the current computers have a conventional von
Neumann design. That is to say, they have a sequential operative modality. When we
proceed to simulate in these computers neural type devices, the “in parallel® operations that
the neural nets can accomplish (in principle), will be performed in a sequential manner.
Thus, when using sequential type computers in simulating neural nets there is no gan
in “real time®, even though these neural nets have the potential to perform many logical
operations simultancously. Only by using parallel-processing computers to simulate neural

fis == {31, 23} = V{~2,, 23} = (1101)
Figure 15
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Jo =+ {21,223} = (1001)

Figure 16

nete can we exploit all the potential of the last. Even 50, when working with sequential
computers, we can save computer memory when computing using neural nets simulation,
wmmmmemhrdemmmm&ﬁm. Thus instead of using the net
shqwnm!‘lsnnlsforcomputingtheconjunctiom\{z;,az},wecanuseanztcomi:ting
of just one formal neuron with two input channels and one axon (output channel —see

Figure 20 ).

54



UNICIENCIA

H{f‘! f:f} = (‘1 cer tgn)
Figure 18

The simulated formal neuron first calculates the conjunction for the first digits of z;
and 22 (0 A 0). The output is 0 which is identified by the absence of a bioelectric pulse
and is the first digit of A {21, 23} ; then, the neuron does the same process with the second
digits, and 20 on. Therefore, those operations illustrated in Figures 12, 13, 14, 15 and
16 can be performed by the nets shown in Figures 214, §, ¢, d , and ¢, respectively.

4 Further Comments

Propositional Calculus (isomorphic to Boolean Algebra) has become important not only
because of its role in basic logic, but also for its direct application in designing digital
circuits. It is therefore important to have a tool like that presented in this paper which
works simply, and systematically with many variables’ logical fimctions. The traditional
approach (truth tables) is dificult to deal with even with a small number of variables. For
example, with seven variables, we need a table with 128 (27 ) rows. With our approach,
it is easy to work with seven variables even manually. Now, if we use devices such as the
neural nets described above and simuiate them on the computer, it is quick and easy to
work with as many as a dozen variables.
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p= = {_'{A{)f.l's fl}: fi} = {V{f,,—‘* {ff!fl}}! = {;{)A{fh fl}}:fl}}

Figure 19

z = (0011)
jD—-—fl = Az, 23} = (0001)
2z = (0101} .
Figure 20

There has recently been a tendency to miniaturise and integrate more and more com-
plex digital circuits while, at the same time, devices oriented towards parallel processing of
information are developed. Both trends reflect growing needs to process huge amounts of
data in a quick and efficient manuer. This is especially true with situations that demand
control in “real time® of different types of complex processes (procsses which require,
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either because of convenience or unavoidability, the use of logical functions with a large
number of variables to model and/or control them. These are occuring more and more
frequently.). The approach presented here fits well with these needs and serves as a tool
for their development.

z = (0011) 2, =(0011)

ST ) ST ) S
fi = V{m, 22} fi = Mazy, 22}

a. ) b.)

2y =(0011) CO\(uoo) 7 = (0011)
o/ z2 =(0101)

(1109

fiz = ~{z1}
¢.) his =5 {z1, 22}
d.)

f9 g?)H {31’ 2:2}

Figure 21
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