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Abstract
The volcanic Barva and Colima multiaquifer system is crucial for the drinking water supply of about 1.7 million people, 
about 30% of the population in Costa Rica. The complexity of this system and the simultaneous occurrence of anthropo-
genic and natural processes complicate the understanding of hydrochemical and hydrogeological dynamics, both essential 
for groundwater protection. This research aimed to develop a model for the discrimination of groundwaters according to 
the main withdrawn aquifer and flow path, assess interaquifer connections, and evaluate the main hydrochemical processes 
governing water quality. Samples (571) from 38 sampling sites, collected quarterly from 2016 to 2020, were analyzed for 
nitrate, major ions, and silica. Principal component analysis and discriminant analysis exhibited and validated sample group-
ing according to the primary aquifer system captured, i.e., Upper Barva, Lower Barva, Upper Colima, and Lower Colima, 
and the occurrence of two flow paths within the Lower Barva and Upper Colima aquifers. Hydrochemical and statistical 
analyses showed resilience to seasonal chemical variation in deeper aquifers and also three groundwater mixing processes. 
Lower Barva groundwater enriches in bicarbonate, magnesium, calcium, sodium, and silica, mainly due to weathering of 
mafic andesitic-basaltic lavas. The Upper and Lower Colima showed higher silica and major ion content, except for calcium, 
indicating longer residence times, dissolution from felsic andesitic minerals, and calcium adsorption by normal ion exchange. 
Weathering of aluminosilicates is the primary process governing groundwater quality in the four studied aquifers, whereas 
cation exchange, interaquifer leakage, and anthropogenic processes might modify the groundwater chemistry.
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Introduction

In many regions of the world, volcanic aquifers have 
become valuable resources in providing water for human 
consumption and economic activities (Bertrand et al. 2010; 
El Maghraby 2015; Hosono et al. 2020; Koh et al. 2018; 
Morán-Ramírez et al. 2016). Approximately 65% of the 
population in the Central Valley (Valle Central), Costa 

Rica, equivalent to 1.7 million people, depends on ground-
water resources from the Barva-Colima volcanic aquifer 
system (Reynolds-Vargas et al. 2006). This multilayered 
system includes the Upper Barva (UB), Lower Barva (LB), 
Upper Colima (UC), and Lower Colima (LC). Despite the 
importance of groundwater for public supply in Costa Rica 
(Madrigal-Solís et al. 2020a), there is scarce information on 
the impact of the hydrogeochemical processes on water qual-
ity. Preliminary studies on groundwater hydrogeochemical 
characterization have been developed in the northwestern 
region of Valle Central (Central Valley; Madrigal-Solís et al. 
2017), the southern part of Valle Central (Vargas and Mora 
1999), the eastern-central region of the country (Madrigal-
Solís et al. 2020b), and the Central Pacific coast (Sánchez-
Gutiérrez et al. 2020).

According to the predominant minerals, water–rock 
interactions directly influence the geochemical evolution of 
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groundwater, while other natural processes might modify its 
chemistry. The saturation of dissolved constituents and their 
further precipitation into secondary clay minerals, calcite 
or dolomite, may lower the concentration of calcium, mag-
nesium, sodium, and other components in the liquid phase 
(Kim et al. 2020). The adsorption of calcium and magne-
sium on the clay surfaces releases additional sodium and 
potassium through the normal ion exchange process, while 
the reverse ion exchange may cause the opposite (Custodio 
and Llamas 1983). In the presence of additional CO2 inputs 
to the aquifer, e.g., from degassing due to volcanic activity, 
high partial pressures of CO2 may accelerate the dissolution 
of calcium bicarbonate, preventing calcite precipitation and 
leading to higher bicarbonate and calcium contents (Loc-
sey et al. 2012). The leaching of chemical substances from 
anthropogenic sources also modifies groundwater chemis-
try. In the Barva and Colima aquifers, Madrigal-Solís et al. 
(2017) described a general increase in chemical constituents 
as groundwater transits through volcanic formations due to 
the natural dissolution of minerals and anthropogenic activi-
ties, while Reynolds-Vargas et al. (2006) found a temporal 
increase of nitrate in several springs and wells extracting 
water from the Barva aquifer due to the extensive use of 
septic tanks and nitrogen fertilizers in coffee plantations.

Moreover, in the Barva-Colima system, the identification 
and characterization of each water level are challenging, as 
the four aquifers present variable depths and thicknesses, 
groundwater mixing processes (BGS/SENARA 1988; 
Madrigal-Solís et al. 2017), and similar rock chemical com-
positions (Losilla et al. 2001). Furthermore, the simultane-
ous occurrence of anthropogenic and natural geochemical 
processes in Barva and Colima aquifers hinders the relative 
importance of each process and complicates the identifica-
tion of the captured aquifers in selected sampling sites. In 
this situation, determining the hydrogeological unit from 
which the water samples are withdrawn represents a sig-
nificant problem when investigating the hydrochemical pro-
cesses affecting the water quality of each aquifer. Hydro-
chemical and statistical analyses enable, as a first step, the 
discrimination of the hydrogeological unit, the identification 
of distinctive flow paths within each unit, and subsequent 
examination of the processes affecting the water quality 
in each aquifer. In this regard, linear and quadratic discri-
minant analysis (DA) is a multivariate statistical practical 
procedure broadly used to verify a preconceived classifica-
tion of groundwater samples according to the corresponding 
hydrogeological unit. The DA generates a model by defin-
ing the most critical variables that differentiate these units, 
providing the linear or quadratic discriminating functions 
that distinguish each aquifer, and classifying each sample 
according to these functions. DA has been successfully 
applied in volcanic systems, combined with other multi-
variate methods (Barzegar et al. 2019; Panagopoulos et al. 

2016) and machine learning procedures (Ha et al. 2021; 
Sajedi-Hosseini et al. 2018). Moreover, principal compo-
nent analyses (PCA; Gan et al. 2018; Panagopoulos et al. 
2016; Pazand and Javanshir 2016), correlation analyses 
(Morán-Ramírez et al. 2016; Kim et al. 2020), factor analy-
sis (Gan et al. 2018); hierarchical cluster analysis (Agbasi 
and Egbueri 2022; Egbueri 2020; Gan et al. 2018); hydro-
chemical diagrams (Ebrahimi et al. 2022; Fenta et al. 2020; 
Hosono et al. 2020; Shishaye et al. 2020; Wisitthammasri 
et al. 2020), base exchange indices (Haji et al. 2021; Mechal 
et al. 2017), multiple linear regression (Egbueri and Agbasi 
2022), and the assessment of saturation indexes of aqueous 
mineral phases (Esteller et al. 2017; Hosono et al. 2020; 
Morán-Ramírez et al. 2016) are widely employed to facili-
tate the interpretation of geochemical processes with large 
hydrochemical data series in volcanic aquifers.

Although most research on groundwater in Costa Rica 
focuses on the Central Valley, previous studies provide a gen-
eral characterization of the hydrogeology and water quality in 
the UB, LB, UC, and LC aquifers (e.g., Arias-Salguero et al. 
2006; BGS/SENARA 1988; Foster 1993; Gómez-Cruz 1987; 
Losilla et al. 2001; Protti 1986; Ramírez and Alfaro 2002; 
TAHAL 1990). Likewise, Reynolds-Vargas and Fraile-Merino 
(2009) and Sánchez-Murillo et al. (2022) estimated the approx-
imate ranges of recharge elevations and apparent groundwater 
age for several sites of the Barva and Colima aquifers, while 
Madrigal-Solís et al. (2017) provided a preliminary hydrogeo-
chemical characterization. Nevertheless, these investigations 
do not supply in-depth information on the hydrogeochemical 
processes or interaquifer connections governing groundwater 
quality, e.g., hydrolysis of aluminosilicates, ion exchange, 
mineral precipitation, and mixing of groundwaters. Thus, the 
present research proposes a comprehensive understanding of 
the controls on water quality along the flow paths in Barva 
and Colima aquifers, which is necessary to contribute to the 
sustainable use of groundwater resources.

Given that groundwater management requires sufficient 
knowledge of the hydrogeochemical dynamics of the aqui-
fers captured for drinking water supply, this research aimed 
to (1) develop a descriptive hydrogeological model for the 
classification of groundwaters in terms of the corresponding 
aquifer and preferential flow path and (2) assess the main 
hydrogeochemical processes, e.g., water–rock interactions, 
groundwater mixing processes, ion exchange, and equilib-
rium processes governing the quality of water in the Barva 
and Colima multilayer aquifer system. The results will pro-
vide a better understanding of the fundamental hydrogeo-
chemical behavior and the controls on water quality along 
the flow paths of the most significant aquifers in Costa Rica 
for implementing improved management policies. Finally, 
recognizing representative sampling sites of the typical con-
ditions of each Barva and Colima aquifer along the flow 
paths is essential for interpreting chemical and isotopic data 
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in the present and future hydrogeological studies, e.g., con-
tamination processes, identification of zones of recharge, 
and transit times, especially in the presence of complex 
multiaquifer systems with similar geological characteristics.

Study site

The study area is located in the central and northern zones of 
the Valle Central of Costa Rica (9°57′31″–10°8′1″ N latitude 
and 84°3′44″–84°15′17″ W longitude). It includes the Barva 
and Colima multiaquifer system, i.e., Upper Barva (Los Ange-
les and Bambinos subaquifers), Lower Barva, Upper Colima, 
and Lower Colima aquifers (Figs. 1 and 2). The area exhibits 
an average slope of 14%. Forest and pastures dominate in the 
uplands, accounting for 24 and 15%, respectively, of the total 
area overlying the shallower Barva aquifer. In the middle zones 
of the subbasins, from 1,000 to 1,400 m asl, the main land uses 

include coffee and other agricultural activities, accounting for 
26 and 12% of the total area, respectively. About 23% of the 
area was covered by urban and industrial activities, mostly 
from 800 to 1,000 m asl (Madrigal-Solís et al. 2019).

The rainy season extends from May to November–mid-
December and the dry season from mid-December to April 
(Maldonado et al. 2013; Taylor and Alfaro 2005). Scattered 
rainfall arrives from the Caribbean slope from November 
to April, mainly in the upper zone. Precipitation is highly 
altitude-dependent. From a data set comprising 54 years of 
observations, mean values in the upper area range between 
90 mm (SD = 22) and 370 mm (SD = 81) during the dry and 
wet seasons, respectively, while mean values in the lower 
zones vary from 18 mm (SD = 20) to 257 mm (SD = 88; 
IMN 2014). Temperature is relatively stable throughout the 
year and highly dependent on altitude (Taylor and Alfaro 
2005); in the upper zone, close to 10 °C, while in the low-
lands, between 20 and 24 °C (IMN 2014).

Fig. 1   Hydrogeological map (BGS/SENARA 1988) for the Barva multiaquifer system and sampling locations of groundwater in Barva and 
Colima flow paths
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Geology

The geological and hydrogeological settings in the study area 
are described in detail by Williams (1952), Echandi (1981), 
BGS/SENARA (1988), and Denyer and Arias (1991). Based 
on the stratigraphic terminology by Williams (1952), the 
area comprises, from bottom to top (Denyer and Arias 1991; 
Protti 1986; Fig. 2): (1) Colima Formation, andesitic lava 
flows covering most of the Valle Central, including La Lib-
ertad Member (two lava flows, covering a minor sector at the 
southeastern part of the study area and, thus, not included 
in this investigation or Fig. 2), Lower Colima Member (sev-
eral lava flows), Puente Mulas Member (layer of tuffs and 
ignimbrites), and Upper Colima Member (sequence of lavas 
and pyroclastites); (2) Tiribí Formation, pyroclastic deposits 
of tuffs and ash-flows covering most of the Valle Central; 
and (3) Barva Formation, subdivided into six lithological 
units: Bermúdez Member (several fractured lava flows), Por-
rosatí and Carbonal members (layers of pyroclasts, weath-
ered lithic and ash tuffs, and lahars), Los Bambinos Member 
(lava flows), Los Ángeles Member (lava flows), and Cra-
ter Member (thick ash and pyroclasts). In addition, at the 
southwestern margin of the study area, Debris avalanche 
El Coyol, a superficial deposit of polymictic volcaniclastic 
material associated with a debris flow event, is overlying 
Tiribí Formation (Méndez and Hidalgo 2004).

The origin of the formations is related to asynchronous 
eruptive events, i.e., of different ages, explaining the modest 
geochemical differences in their chemical composition. In 

the Colima Formation, the lavas of the Lower Colima Mem-
ber are trachyandesites and porphyritic andesites, containing 
phenocrystals of plagioclase, e.g., anorthite, Puente Mulas 
Member is composed of tuffs and ignimbrites, whereas the 
lavas from the Upper Colima Member are aphyric andesites 
with only 4% phenocrysts (Kussmaul 1988)—Table S1 of 
the electronic supplementary material (ESM). The Tiribí 
Formation corresponds to a pack of chemically variable 
tuffs and ignimbrites, ranging from andesites transitional to 
shoshonitic dacites (Kussmaul 1988; Kussmaul and Spre-
chmann 1982), basaltic-andesites, trachytes, and trachydac-
ites (Hannah et al. 2002), with trachyandesites being the 
dominant composition (Pérez et al. 2006), bearing 1–10% of 
plagioclases (Table S1 of the ESM). In the Barva Formation, 
the lavas of the Bermudez Member exhibit highly fractured 
porphyritic basaltic andesites (Arredondo Li and Soto 2007; 
Echandi 1981) with plagioclase and anorthite phenocrysts 
(Table S1 of the ESM). The lavas of the Los Bambinos 
Member are porphyritic andesites, showing a higher pro-
portion of plagioclase phenocrysts than Los Angeles (Arre-
dondo Li and Soto 2007; Table S1 of the ESM), while Los 
Angeles Member lavas are basaltic andesitic (Rojas et al. 
2017), of porphyritic aphanitic texture (Arredondo Li and 
Soto 2007).

In terms of major and trace elements, Tiribí tuff rocks are 
similar to Colima Formation, indicating a common source, 
while the younger lavas from Barva Formation are more 
mafic (Pérez et al. 2006). The lavas from Colima Forma-
tion and Tiribí differ from the Barva Formation since (1) in 

Fig. 2   Simplified stratigraphical 
column, nonscaled, of the Barva 
and Colima multiaquifer system
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Colima and Tiribí, the K2O/Na2O ratio is approximately one 
and higher than in Barva Formation, (2) Colima and Tiribí 
contain more K2O and Na2O than Barva Formation at the 
same silica concentration, although all three formations are 
considered K-rich and, (3) Barva Formation contains more 
CaO and MgO than Colima and Tiribí, being Barva Forma-
tion, a typically calc-alkaline association (Kussmaul 1988).

Hydrogeology

The fractured lavas and high permeability breccias in Valle 
Central form the Barva and Colima multiaquifer system 
(Fig. 2; BGS/SENARA 1988). The Barva multiaquifer sys-
tem (Figs. 1 and 2), hereafter referred to as Barva aquifer, 
comprises an area of approximately 190 km2. It comprises: 
(1) Upper Barva (UB) aquifer, which includes the Los 
Bambinos and Los Angeles sub-aquifers embedded in the 
Los Bambinos and Los Angeles Members, and (2) Lower 
Barva (LB) aquifer within the Bermúdez Member (Ramírez 
and Alfaro 2002). The transmissivity of the aquifer ranges 
between 100 and 500 m2/day, with a storage coefficient of 
0.1 (Gómez-Cruz 1987; Ramírez and Alfaro 2002); hydraulic 
conductivity varies between 1 and 10 m/day, the saturated 
thickness between 50 and 100 m (Ramírez and Alfaro 2002), 
and the depth to water level between 25 and 60 m (Arias-
Salguero et al. 2006). The recharge of UB occurs by direct 
infiltration and influent rivers (Ramírez and Alfaro 2002). 
In LB, the recharge occurs by infiltration from influent riv-
ers, percolation from UB through the Carbonal and Porrosatí 
aquitard, and direct infiltration in the remaining areas (BGS/
SENARA 1988; Gómez-Cruz 1987). Preferential recharge 
occurs in the upper parts of the aquifer (Reynolds-Vargas and 
Fraile-Merino 2009; Sánchez-Murillo et al. 2017; Sánchez-
Murillo et  al. 2022). Discharge occurs mainly through 
springs, as the base flow of rivers, and through the fractured 
tuffs and ignimbrites of the Tiribí aquitard, which are suffi-
ciently permeable to allow infiltration from the Barva aquifer 
into the Colima underlying aquifers (BGS/SENARA 1988; 
Foster et al. 1985; Reynolds-Vargas and Fraile-Merino 2009).

The Colima multiaquifer system is situated within the 
Colima Formation and separated from the Barva aqui-
fer by the Tiribí aquitard (Fig. 2). It comprises the aqui-
fers (1) Upper Colima (UC), of approximately 170 km2, 
and (2) Lower Colima (LC), of 230 km2 (Arias-Salguero 
et al. 2006). Tuff and ignimbrites of Puente Mulas aquitard 
separate both aquifers (Fig. 2). Their boundaries have not 
been established due to similarities in rock compositions 
with Barva aquifer and their varying thickness and depths 
(BGS/SENARA 1988; Losilla et al. 2001). The UC exhibits 
transmissivities between 500 and 9,500 m2/day (Losilla et al. 
2001). It is confined when overlain by the Tiribí Formation, 
while functioning like an unconfined aquifer in the remain-
ing extension. In the western portion of the Valle Central, it 

recharges from the Barva aquifer, through the fractured tuffs 
and ignimbrites of the Tiribí Formation (Arias-Salguero 
et al. 2006; BGS/SENARA 1988) and by direct infiltration 
in areas where it is not confined (TAHAL 1990). The LC 
aquifer is confined by the Puente Mulas aquitard, whereby 
part of its recharge occurs by percolation through this unit 
and part by direct infiltration (TAHAL 1990). The LC exhib-
its a storage coefficient of 1.4 × 10–4 and a transmissivity 
ranging from 500 to 7,500 m2/day (Losilla et al. 2001). The 
discharge from the Colima aquifers occurs through springs 
and along the Virilla River.

Materials and methods

Water sampling and analyses

A total of 38 sites, including 10 springs and 28 wells with 
depths ranging from 30 to 350 m, were sampled (Table 1). 
From 2016 to 2020, 571 samples were collected approxi-
mately every 3 months during March–April (representative 
of the dry season), June (early wet season), September (mid-
wet season), and November–December (late wet season). 
The physical parameters were determined in situ with a 
multielectrode HI98311 model (Hanna Instruments, USA) 
for electrical conductivity (EC in μS/cm), total dissolved sol-
ids (TDS), and temperature (T). A multielectrode HI98121 
was used for pH and redox potential (ORP) measurements, 
and a HI 9147 sensor for dissolved oxygen (DO). Samples 
were collected in duplicate in 500-ml Nalgene bottles and 
kept refrigerated at 4 °C until analysis the following day. 
Bicarbonate (HCO3

−) was estimated by volumetric analysis 
according to method 2310B (American Public Health Asso-
ciation 2012), whereas calcium (Ca2+), magnesium (Mg2+), 
potassium (K+), sodium (Na+), chloride (Cl–), nitrate (as 
NO3

–), sulfate (SO4
2–), and fluoride (F–) were analyzed by 

ion chromatography (Dionex Thermo Scientific ICS 5000), 
according to the method 4110 (Rice 2012). In addition, silica 
(SiO2) was analyzed in 53 samples collected during June 
2016, January 2021, and April 2021 by spectrophotometry 
according to the 4500-SiO2 C method (Rice 2012). Only 
samples with a charge balance error of 5% or less were used.

Statistical analyses

Hydrochemical and physical variables from groundwater 
samples were assessed through the statistical software SPSS 
(version 25) to conduct: (1) descriptive analyses, (2) normality 
and homogeneity of variances tests using the Shapiro-Wilk 
and Levene’s tests, (3) comparisons between wet and dry 
seasons within each sampling site to assess whether seasonal 
or annual data should be used in subsequent statistical and 
hydrochemical analyses, (4) comparisons between wet and 
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dry seasons within each aquifer and flow path and, (5) com-
parisons between the four studied aquifers and flow paths. A 
t-test was applied to compare two data sets when data com-
plied with the assumptions of the normal distribution; other-
wise, the Mann-Whitney test was used.

The lithological descriptions were obtained from the 
National Service for Groundwater, Irrigation and Drainage, 
SENARA (Costa Rica), and from the Empresa de Servicios 
Públicos de Heredia, ESPH S.A. (Costa Rica) databases. For 
the selection of the sampling sites, preliminary identification 

Table 1   General characteristics 
of sampling sites in Barva and 
Colima multiaquifer system

a Spring or well
b Confined (C) or unconfined (U)

ID code Typea Elevation (m asl) Total depth (m) Screen depth (m) Depth to 
water (m)

Confining 
conditionb

Upper Barva
   RN02 S 2,119 - - - U
   RN03 S 1,764 - - - U
   RN23 W 1,402 35 23–35 25 U

Lower Barva
   EN68 W 1,860 160 138–160 122 U
   RN01 W 1,987 106 80–100 77 C
   RN06 W 1,192 90 72–90 76 U
   RN08 W 1,255 42 24–42 26 U
   RN12 S 936 - - - U
   RN13 S 956 - - - U
   RN17 W 861 30 12–30 5 U
   RN21 S 1,140 - - - U
   RN22 S 896 - - - U
   RN27 W 1,113 70 41–68 42 U
   RN29 W 1,017 50 35–48 41 U
   RN30 W 1,028 66 32–66 29 U
   RN31 W 980 45 27–45 28 U
   RN32 W 976 50 22–50 13 U
   RN33 W 892 48 25–50 23 U
   RN38 S 1,707 - - - U
   RN39 S 1,708 - - - U
   RN40 W 980 57 32–53 41 U

Upper Colima
   RN07 W 1,139 75 45–75 21 U
   RN14 S 922 - - - U
   RN35 W 1,296 182 151–187 115 C
   RN36 W 924 134 - - C
   RN43 W 846 90 59–90 58 C
   RN44 W 922 80 50–80 15 C
   RN45 W 885 63 45–63 4 U
   RN46 W 924 139 123–139 100 C
   EN69 W 1,043 210 66–137 114 C
   EN70 W 1,222 200 155–185 149 C
   EN75 W 1,113 245 200–245 156 C
   EN77 W 1,260 124 97–124 77 C

Lower Colima
   RN09 W 1,145 350 207–343 171 C
   RN15 S 856 - - - C
   RN37 W 921 200 124–200 - C
   RN42 W 854 92 68–92 65 C
   RN47 W 923 200 125–189 - C

2320 Hydrogeology Journal (2022) 30:2315–2340
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of the primary aquifer was performed based on the approxi-
mated depths of the boreholes and the available hydrogeo-
logical description. The principal component analysis (PCA) 
and discriminant analysis (DA) were applied to assess and 
validate this prior classification, differentiate the physical 
and chemical variables in each aquifer, and evaluate the 
presence of different flow path systems by using the statisti-
cal software XLSTAT (Addinsoft 2021). The physical and 
chemical mean values were log-transformed (Log10) and 
standardized (z-scores, where zi = (xi-mean)/SD) to homog-
enize the effect of variables measured on different scales 
and obtain a log-normal distribution (Reimann et al. 2008).

The DA was employed to validate the prior classification of 
samples, according to the aquifer withdrawn, using the avail-
able hydrochemical data from all samples. The DA algorithm 
eliminated variables showing multicollinearity from the analy-
sis. It tested the discriminant ability of the selected independ-
ent-predictor variables by examining the differences in means 
among groups using Wilk’s Lambda test (Rao’s approxima-
tion). A Box test (with a Chi-square asymptotic approximation) 
was employed to select the DA model. When equality among 
the covariance matrices is present, the linear model should be 
selected; otherwise, the quadratic model should be chosen. The 
DA estimated the group centroids; a sample close to a centroid 
was classified as belonging to that group. Discriminant func-
tions classified the samples into each group. Furthermore, a 
validity test was performed, in which the discrimination func-
tions were estimated for all except for 20% of the samples, i.e., 
validation samples. Then, the discriminant functions were used 
to predict the classification of the randomly selected valida-
tion samples. The validity of the model is verified through the 
percentage of succeeded classifications.

Hydrogeochemical diagrams

Hydrochemical data of all individual samples were used to 
produce Piper diagrams (Piper 1953), Pearson correlation 
coefficients, and bivariate diagrams to assess the influence of 
water–rock interactions, mixing, and ion-exchange processes 
on groundwater quality. The mean values were included in 
the diagrams to facilitate the graphical representation of 
each aquifer. In the analysis of ion-exchange processes, two 
base exchange indices were used: chloro-alkaline imbalance 
indices 1 and 2 (CAI-1 and CAI-2), according to Eqs. (1) 
and (2) (Schoeller 1967):

(1)CAI-1 =
rCl− − r

(

Na+ + K+
)

rCl
−

(2)CAI-2 =
rCl− − r

(

Na+ + K+
)

r

(

SO
4

2−
+ HCO

3

−
+ NO

3

−
)

These indices usually obtain a positive or negative value 
close to 0. The exchange of bases is defined by the existence 
of an increasing or decreasing trend, not by an absolute value 
(Custodio and Llamas 1983). Negative values of CAI-1 and 
CAI-2 indicate normal cation exchange, i.e., calcium and 
magnesium are adsorbed onto clay minerals while sodium 
and potassium are released into groundwater. Positive values 
of CAI-1 and CAI-2 suggest reverse ion exchange, i.e., sodium 
and potassium retention on clay minerals and release of cal-
cium and magnesium into the groundwater (Haji et al. 2021). 
In addition, a higher absolute value of CAI-1 indicates a higher 
degree of cation exchange (Pan et al. 2019). Moreover, the rela-
tion of [Na+ + K+ – Cl–] vs. [Ca2+ + Mg2+ – SO4

2– – HCO3
–] 

was employed to corroborate the relevance of ion exchange. 
A linear relation with a slope of –1.0 indicates ion exchange 
is an important control of water chemistry (Fisher and Mul-
lican III 1997; Fenta et al. 2020; Hosono et al. 2020). Finally, 
the software package EQ3/6 for hydrogeochemical modeling 
(Wolery 1992) was used to estimate the saturation indexes and 
partial pressure of CO2 (g) in 53 samples collected during June 
2016, January 2021, and April 2021.

Results

The hydrochemical parameters of the 571 groundwater sam-
ples collected in 38 springs and wells in the study area are 
shown in Table S2 of the ESM, with the minimum, maxi-
mum, mean, median, standard deviation (SD), and coeffi-
cient of variation (CV) estimations. The Shapiro-Wilk test 
showed evidence of normal distribution in almost all con-
stituents within each sampling site (Table S2 of the ESM).

Principal component analysis

The PCA was applied to evaluate relationships between vari-
ables in each aquifer and the potential occurrence of differ-
ent flow path systems. Mean values were employed since, 
for most of the chemical parameters: (1) the Shapiro-Wilk 
test did not show evidence of nonnormality (Table S2 of the 
ESM), and (2) the Mann-Whitney U test found no significant 
differences between seasons per sampling site (Table S3 of 
the ESM). Variables with factor loadings explaining most of 
the cumulative variance in the first two principal components 
(PC) were selected, including major ions, nitrate, and tem-
perature, all of which showed factor loadings above 0.6. The 
Bartlett Chi-square test confirmed that variables are correlated 
but not orthogonally (df = 36, p < 0.001), whereas the Kai-
ser–Meyer–Olkin measure of adequacy was 0.755. The first 
two principal components described 85.89% of the cumulative 
variance of the data set (Table 2), with eigenvalues >1.
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The first function F1 showed strong factor loadings 
in TDS, calcium, magnesium, sodium, potassium, bicar-
bonate, chloride, sulfate, and temperature (from 0.715 
to 0.910; Table 2; Fig. 3a), representing mineralization 
due to the weathering of volcanic lithology. The second 
function F2 exhibited a strong positive loading only in 
nitrate (0.849) and, to a lesser extent, in calcium (0.463), 

representing anthropogenic activities such as inputs from 
nitrogen fertilizers and sewage leaching from septic tanks/
drainage systems. Weaker negative loadings were found 
in sulfate, sodium and potassium (from –0.451 to –0.611), 
showing that the relative importance of mineralization due 
water–rock interactions is negatively correlated to F2, i.e., 
to anthropogenic activities.

The F1–F2 plot exhibited three subgroups of samples 
within the Barva aquifer (Figs. 3a and 4a):

1.	 The UB samples and LB samples in the highlands, 
located in the negative portion of F1 and F2 and 
opposed to variables related to water–rock interac-
tions. These samples represent young groundwaters 
in the preferential recharge zone, and thus low min-
eralization and temperatures, small transit times and 
short flow paths.

2.	 Samples along a northern flow path, hereafter referred 
to as Lower Barva flow path 1 (LB1), located mainly in 
the positive part of F2 and close to nitrate.

3.	 Samples along a southern flow path, referred to as Lower 
Barva flow path 2 (LB2), located on the positive side of 
F1, close to nitrate, but also to calcium, chloride, mag-
nesium, and bicarbonate variables.

The F1 and F2 plots also showed two subgroups among 
the Colima samples (Figs. 3a and 4b,c):

Table 2   Factor loadings of selected variables, eigenvalues and per-
centage of total variance explained for groundwater in Barva and 
Colima multiaquifer system

TDS total dissolved solids, T temperature

Variable F1 F2

TDS 0.910 0.035
T 0.852 0.335
HCO3

– 0.892 –0.179
NO3

– 0.462 0.849
Cl– 0.942 –0.055
Ca2+ 0.851 0.463
Mg2+ 0.946 –0.068
SO4

2– 0.638 –0.523
Na+ 0.870 –0.451
K+ 0.715 –0.611
Eigenvalue 6.70 1.88
Total variance (%) 67.01 18.89
Cumulative variance (%) 67.01 85.89
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Fig. 3   Multivariate statistical analyses showing a F1 and F2 plot for the principal components analysis and b estimated centroids for the discri-
minant analyses for the composition of groundwater samples in Barva and Colima flow paths
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1.	 Samples along a north–south flow path, referred to as 
Upper Colima flow path 1 (UC1), were strongly related 
to potassium and sodium, increasing their contents as 
groundwater flows from RN07 and RN35, at a higher 
elevation, to discharge site RN43.

2.	 Samples located along a northeast–southwest flow path, 
referred to as Upper Colima flow path 2 (UC2), in the 
positive section of F1 and F2. These samples are related 
to nitrate, calcium, chloride, magnesium, and bicarbo-
nate, and lay between LB2 and UC1.

3.	 Samples from LC are highly related to potassium and 
sodium and are closely associated with the UC1 sam-
ples. As opposed to the other flow paths, mineralization 

decreased as groundwater traveled from sampling site 
RN09, at a higher elevation, to discharge site RN15, 
which is also evident by the decrease in the mean 
TDS values, from 213 in RN09, to 123 ppm in RN15 
(Table S2 of the ESM).

Discriminant analysis

Discriminant analysis (DA) was conducted to validate the 
prior classification of samples into aquifers and flow paths, 
using the same set of variables used in the PCA as independ-
ent variables. The box test indicated that within-class covari-
ance matrices are different, and the quadratic model should 

Lower Barva flow path 1
Lower Barva flow path 2
Upper Colima flow path 1
Upper Colima flow path 2
Lower Colima

a

c

b N

Legend:

Barva isophreatic contour

Lower Colima isophreatic contour
Upper Colima isophreatic contour

Fig. 4   Phreatic and piezometric contours, modified from BGS/SENARA (1988), and studied groundwater flow paths in a Barva, b Upper 
Colima, and c Lower Colima aquifers
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be used (df = 140, p < 0.0001). The variables selected 
proved significant differences among group means (Wilk’s 
Lamba test, df = 35, p < 0.0001) and, thus, their discrimi-
nant ability. The eigenvalues were estimated for the principal 
factors and the corresponding discrimination percentages, 
where the F1 described 50.1% of the discrimination power 
and the F2, 39.1%, leading to a cumulative discrimination 
power of 89.2% (Fig. 3b).

According to the correlation of the predictor variables and 
the factor loadings, i.e., estimated by the canonical functions, 
sodium, potassium, bicarbonate, magnesium, and chloride 
were the most significant variables with discriminant power 
in the F1 and nitrate and calcium in F2. The canonical cor-
relations showed values of 0.869 and 0.835 for F1 and F2, 
respectively, showing similar discriminant power (Table 3). 
Once the canonical discriminant functions were estimated, the 
centroids evaluated these functions by showing a separation 
between the mean points of each grouping class (Fig. 3b).

The results showed similarities with those obtained from 
the PCA (Fig 3a):

1.	 In the discriminant factor space (Fig. 3b), the separation 
between centroids and their confidence circles distin-
guished the proposed grouping of samples according to 
the primary aquifer and flow path, e.g., LB1 from LB2 
and UC1 from UC2.

2.	 The centroid of UB, in the positive part of F1 and F2, 
was significantly separated from the other centroids and 
opposed to the chemical variables, showing lower min-
eralization and shorter flow paths.

3.	 The centroids of LB1 and LB2, in the positive part of F1, 
displayed a stronger influence from the nitrate variable, 
while calcium showed a stronger influence on LB2.

4.	 The centroid of UC2, in the negative part of F1 and 
F2, is equidistant to LB2 and UC1, showing a plausible 
mixing pattern with LB2 and, thus, a more significant 
influence of calcium and nitrate compared to UC1.

 The UC and LC centroids, in the negative part of F1, exhib-
ited stronger influence from magnesium, chloride, sodium, 
and potassium, indicating longer flow paths, residence times 
and mineralization.

According to the confusion matrix, the percentage of 
correctly classified samples was 92.8% from a total of the 

456 training samples used to estimate the discriminant func-
tions of the DA model (Table 4). The test of validity on the 
114 remaining samples, i.e., 20% of all samples, showed 
that 90.4% of these samples were successfully classified 
(Table 4).

Hydrochemical characterization

The sampling sites and the proposed flow paths are shown 
in Fig. 4. The mean values were employed in the diagrams 
to facilitate the graphical representation of each aquifer. In 
general, the ion abundance of major cations and anions, in 
meq/L, in each aquifer and flow path was the following:

According to TDS contents, ion abundance and the typical 
sequences for recently recharged waters, i.e., Ca2+ > Mg2+ 
> Na+ > K+ and, HCO3

– > SO4
2– > Cl– (Chebotarev 1955; 

Custodio and Llamas 1983), only the samples from UB were 
classified as slightly mineralized young groundwater. In LB 
and UC2, calcium was the dominant cation, while magne-
sium dominated in UC1 and LC. Regarding anions, bicar-
bonate was dominant in all flow paths. Nitrate was the sec-
ond anion dominating LB and UC2, whereas UC1 and LC 
showed a dominance of sulfate and chloride after bicarbonate 
(Table 5), departing from the typical sequence for young, 
moderately mineralized groundwaters. The Piper diagram in 
Fig. S1 of the ESM shows individual groundwater samples 
and their median concentrations per sampling site. Ground-
water from UB was classified into two facies, from mixed 
Ca2+ – Mg2+ – SO4

2– – HCO3
– to Ca2+ – Mg2+ – HCO3

–. 
Most of the samples from the other aquifers were classified 

UB ∶ Ca2+ > Mg2+ > Na+ > K+ and HCO−

3
> SO2−

4
> Cl− > NO−

3

LB1 ∶ Ca2+ > Mg2+ > Na+ > K+ and HCO−

3
> NO−

3
> Cl− > SO2−

4

LB2 ∶ Ca2+ > Mg2+ > Na+ > K+ and HCO−

3
> NO−

3
> Cl− > SO2−

4

UC1 ∶ Mg2+ > Ca2+ > Na+ > K+ and HCO−

3
> SO2−

4
> Cl− > NO−

3

UC2 ∶ Ca2+ > Mg2+ > Na+ > K+ and HCO−

3
> NO−

3
> Cl− > SO2−

4

LC ∶ Mg2+ > Ca2+ > Na+ > K+ and HCO−

3
> SO2−

4
> Cl− > NO−

3

Table 3   Correlation between the predictor variables and the discriminant factor loading scores for groundwater in Barva and Colima multiaqui-
fer system

Factor Ca2+  
[mg/L]

Mg2+  
[mg/L]

Na+

[mg/L]
K+  
[mg/L]

HCO3
–  

[mg/L]
Cl–  
[mg/L]

NO3
–

[mg/L]
Canonical 
correlations

F1 –0.387 –0.792 –0.902 –0.850 –0.843 –0.767 0.099 0.869
F2 –0.751 –0.402 0.082 0.083 –0.515 –0.162 –0.757 0.835
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into mixed Ca2+ – Mg2+ – HCO3
– facies, showing a slight 

evolution towards Mg2+ – Cl– type in LB and UC aquifers. LC 
exhibited another minor variation from Mg2+ – HCO3

– towards 
Ca2+ – Mg2+ – HCO3

– facies along the flow path.

Variation on hydrochemical parameters

Regarding physical parameters and major anions, important 
variations were found within and between aquifers (Table 5; 
Fig. 5; Tables S2 and S4 of the ESM). The mean values of 
ORP and DO were relatively high (217 mV and 6.27 mg/L, 
respectively), suggesting general oxidic conditions in all 
aquifers. The EC ranged between 33 to 728 μS/cm, while 
the pH ranged between 5.2 to 7.9, with a mean value of 6.58. 
In general, calcium content varied from 4.5 to 37.0 mg/L; 
sodium, from 2.8 to 32.4 mg/L; magnesium, from 1.1 to 18.4 
mg/L, and potassium, from 1.1 to 12.7 mg/L, with CVs vary-
ing from 14% for calcium in LC to 49% for magnesium in 
UB (Table 5). The major anions also exhibited a wide range 
of values. Bicarbonate varied from 19 to 173 mg/L; nitrate, 
from 0.3 to 55.6 mg/L; chloride, from 0.9 to 31.6 and, for 
sulfate, from 0.7 to 38.4 mg/L, with CVs ranging from 14% 
for bicarbonate in LC to 83% for nitrate in UB (Table 5).

Comparison between aquifers and flow paths

When comparing aquifers and flow paths, the Mann-Whitney 
U test showed significant differences in almost all physical 
and chemical parameters (Table S4 of the ESM), including 
differences between LB1 and LB2 and between the UC1 and 
UC2, except for potassium (median (M) = 4.5 mg/L). Unex-
pectedly, more similarities were observed between LB2 and 

UC2 regarding nitrate (~20 mg/L), calcium (~21 mg/L). and 
sulfate (~6 mg/L; p < 0.001). The UB showed, in general, 
the lowest contents of TDS, EC, and major ions (p < 0.001), 
whereas LC exhibited the highest median values, except for 
nitrate and calcium (p < 0.001). Median chloride concen-
trations in LC doubled the contents found in UC and were 
three and nine times higher than in LB and UB, respectively 
(Table 5).

Seasonal variation

Seasonal differences were not significant when comparing 
dry versus wet season datasets within aquifers (Fig. 5 and 
Fig. S2 of the ESM), except for lower pH and TDS in UB, 
LB, and UC, and higher ORP in LB during the wet season 
(Kruskal-Wallis test, degrees of freedom (df) = 7, p < 0.05). 
Regarding the seasonality within sampling sites, the Mann-
Whitney U test analyses found no significant seasonal dif-
ferences, except in seven sites showing variations in one to 
four parameters (Table S3 of the ESM): RN03 in the UB, 
RN01, 22, 27, 33, 40 in LB, and RN43 in UC. Furthermore, 
when comparing the CV obtained within sites, the sampling 
locations classified within the UB aquifer, followed by the 
sites in LB, displayed higher mean CV compared to sites 
in the deeper Colima aquifers for most of the physical and 
chemical parameters, indicating greater temporal variability 
(Fig. S3 of the ESM).

Spatial evolution in aquifers and flow paths

Hydrogeochemical spatial variation is observed in Stiff 
diagrams in Fig. 6a, b, silica and magnesium concentration 
maps in Fig. 6c, d and biplots 7a–d. In Barva aquifers, low 

Table 4   Confusion matrix 
for the original and validation 
samples of groundwater in Barva 
and Colima multiaquifer system

Samples Aquifer n Post-classification Correctly 
classified 
(%)UB LB1 LB2 UC1 UC2 LB

Original samples:
Prior classification

UB 52 51 1 0 0 0 0 98.1
LB1 65 1 63 1 0 0 0 96.9
LB2 180 0 4 164 0 10 2 91.1
UC1 67 0 1 3 57 0 6 85.1
UC2 32 0 0 0 0 32 0 100.0
LC 60 0 0 1 3 0 56 93.3
Total 456 52 69 169 60 42 64 92.8

Validation samples:
Prior classification

UB 14 12 1 1 0 0 0 85.7
LB1 21 0 20 1 0 0 0 95.2
LB2 38 0 0 33 1 3 1 86.8
UC1 15 0 0 0 14 0 1 93.3
UC2 11 0 0 0 0 11 0 100.0
LC 15 0 0 0 2 0 13 86.7
Total 114 12 21 35 17 14 15 90.4
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Table 5   Descriptive statistics of physical and chemical parameters of 
groundwater samples in the Upper Barva (UB), Lower Barva (LB), 
Upper Colima (UC), and Lower Colima (LC) within the Barva and 
Colima multiaquifer system

Variable UB LB UC LC
n = 66 n = 304 n = 125 n = 76

ORP
[mV]

Min 23 58 109 57
Max 436 716 484 595
Median 190 218 224 203
Mean 204 222 224 208
SD 76 91 74 92
CV (%) 37.3 40.8 33.1 44.1

DO
[mg/L]

Min 1.6 2.0 3.4 3.8
Max 9.1 9.6 10.1 30.5
Median 7.5 6.1 6.5 7.0
Mean 6.9 6.0 6.3 18.9
SD 1.7 1.6 1.6 83.7
CV (%) 25.4 26.2 24.6 442.4

TDS
[ppm]

Min 11 16 34 49
Max 199 374 208 361
Median 54 110 117 135
Mean 65 118 118 154
SD 41 48 35 59
CV (%) 64.1 40.8 29.6 38.4

T
[°C]

Min 10.4 14.4 20.2 17.1
Max 26.2 29.8 27.5 24.8
Median 18.5 22.2 22.7 22.3
Mean 18.6 22.2 22.7 22.3
SD 2.5 2.2 1.4 1.2
CV (%) 37.3 40.8 33.1 44.1

pH Min 5.20 5.49 5.60 5.80
Max 7.81 7.70 7.50 7.90
Median 6.65 6.45 6.70 6.95
Mean 6.62 6.43 6.65 6.97
SD 0.71 0.37 0.39 0.45
CV (%) 10.8 5.8 5.9 6.5

EC
[μS/cm]

Min 33.0 69.0 60.0 160.0
Max 385.0 720.0 667.0 728.0
Median 105.5 212.0 220.0 241.0
Mean 127.9 223.4 219.4 288.9
SD 81.8 86.8 74.5 111.9
CV (%) 64.0 38.9 34.0 38.8

Ca2+

[mg/L]
Min 4.48 4.56 11.69 8.66
Max 15.50 36.96 26.01 26.29
Median 8.18 19.85 17.22 16.46
Mean 8.63 20.05 17.80 16.40
SD 2.88 5.71 3.43 2.28
CV (%) 33.4 28.5 19.3 13.9

Table 5   (continued)

Variable UB LB UC LC
n = 66 n = 304 n = 125 n = 76

F–

[mg/L]
Min 0.01 0.01 0.01 0.01

Max 0.63 2.01 1.09 0.32

Median 0.16 0.09 0.18 0.13

Mean 0.19 0.14 0.21 0.18

SD 0.14 0.18 0.16 0.11

CV (%) 73.15 125.98 72.18 63.04
Mg2+

[mg/L]
Min 1.07 1.35 5.01 6.57
Max 6.40 17.99 14.80 18.37
Median 3.88 8.51 10.80 12.71
Mean 3.44 8.36 10.32 12.64
SD 1.69 2.25 2.45 2.91
CV (%) 49.2 26.9 23.8 23.0

Na+

[mg/L]
Min 2.77 3.50 4.01 7.18
Max 9.21 13.68 19.05 32.42
Median 4.56 6.59 10.51 15.08
Mean 4.48 6.95 9.62 18.30
SD 1.14 2.16 3.46 6.68
CV (%) 25.4 31.1 35.9 36.5

K+

[mg/L]
Min 1.48 1.06 1.42 2.40
Max 3.36 7.10 6.19 12.73
Median 2.27 2.97 4.39 5.83
Mean 2.26 3.00 3.94 6.93
SD 0.40 0.94 1.20 2.51
CV (%) 17.9 31.2 30.4 36.3

HCO3
–

[mg/L]
Min 19.20 31.30 56.50 73.74
Max 78.56 173.40 138.50 163.87
Median 34.83 86.05 97.40 116.82
Mean 37.15 86.42 96.18 117.81
SD 11.13 24.41 21.05 16.49
CV (%) 49.2 26.9 23.8 23.0

Cl–
[mg/L]

Min 0.90 1.10 2.00 5.64
Max 6.95 17.10 17.70 31.55
Median 1.96 6.70 9.80 17.15
Mean 2.45 7.13 9.27 17.23
SD 1.37 3.50 3.52 7.17
CV (%) 56.0 49.1 38.0 41.6

SO4
2–

[mg/L]
Min 2.64 1.10 0.70 5.70
Max 32.93 17.50 28.10 38.37
Median 13.21 5.20 15.80 25.99
Mean 12.09 6.39 14.61 21.17
SD 7.52 3.78 9.59 11.30
CV (%) 62.2 59.1 65.6 53.4
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major ion and silica contents were observed in the highlands 
and in UB and increasing gradually towards the lowlands 
(Fig. 6a, c). Bicarbonate, calcium, and magnesium exhibited 
the greatest increases (Fig. 7a). Groundwater in UC1 and 
UC2 also showed increasing concentrations along the flow 
paths, except for calcium in UC1, thus the sites at lower 
elevation displayed higher magnesium relative to calcium 
contents (Figs. 6b, d, 7b, c). In UC2, calcium maintained 
its dominance as the main cation (Fig. 7c), as in the Barva 
aquifer. Conversely, major ions and silica in LC decreased as 
groundwater traveled westward to lower zones, from RN09 
to RN15 (Fig. 6b, d), while showing lower calcium relative 
to magnesium content (Fig. 7d) and, thus, similarities with 
UC1. Distances along the flow paths were estimated based 
on the first sampling site of each flow path and the cor-
responding phreatic and piezometric contour line (Fig. 4).

Hydrogeochemical processes

Weathering of aluminosilicate rocks

Dissolved CO2 increases the acidity of groundwater 
through the production of weak carbonic acid (H2CO3), 
enhancing the bicarbonate contents, the alteration of the 
minerals in the rocks, and the dissolution of chemical spe-
cies, which, in turn, releases more bicarbonate. The dia-
gram of [calcium + magnesium + sodium + potassium] 
vs. [bicarbonate] (Fig. 7e) shows the relative importance 

Table 5   (continued)

Variable UB LB UC LC
n = 66 n = 304 n = 125 n = 76

NO3
–

[mg/L]
Min 0.82 0.30 3.00 1.74

Max 15.27 55.60 30.40 14.49

Median 3.00 26.40 12.10 5.20

Mean 5.11 25.26 13.11 6.18

SD 4.23 11.93 6.71 3.35

CV (%) 82.7 47.2 51.2 54.1
SiO2
[mg/L]

Min 15.52a 21.30b 33.00c 31.60
Max 54.50 107.20 92.80 83.80
Median 35.90 61.75 76.50 68.80
Mean 36.69 56.02 67.49 60.81
SD 13.83 25.48 22.56 21.72
CV (%) 37.69 45.49 33.43 35.72

a n = 7
b n = 26
c n = 11
d n = 9
EC electrical conductivity; T temperature; DO dissolved oxygen; 
ORP oxidation-reduction potential; TDS total dissolved solid. Lim-
its of detection (LD) and quantification (LQ): bicarbonate (LQ = 1.3 
mg/L), chloride (0.06 and 0.19 mg/L), nitrate (0.11 and 0.35 mg/L), 
sulphate (0.081 and 0.24 mg/L), sodium (0.16 and 0.48 mg/L), mag-
nesium (0.19 and 0.57 mg/L), potassium (0.052 and 0.16 mg/L); cal-
cium (0.28 and 0.84 mg/L); fluoride (0.0.015 and 0.045) and silica 
(0.01 and 0.02 mg/L)
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of bicarbonate as a balancing anion (Haji et  al. 2021; 
Mechal et al. 2017). Samples fell below the 1:1 equiline 
and progressively departed from the line as groundwa-
ter is more mineralized, implying that bicarbonate is 
the dominant ion to balance major cations only in the 

recharge zone. Moreover, the chloride vs. bicarbonate/
chloride biplot (King et al. 2014) displays a lower rela-
tive abundance of bicarbonate, while chloride increases in 
LB, UC1, and UC2, which can be used to describe larger 
transit times (Fig. 7f).
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Samples that fell around the stoichiometric lines for minerals 
dissolution denote a common origin of the involved parameters 
through the weathering of the dominant geologic formations and 
reveal additional sources of ions due to geochemical processes, 
other than rock dissolution in the study area. Hydrolysis of sili-
cates and aluminosilicates yields kaolinite clays and major ions. 
Figure 8a shows UB and LB samples mainly falling between the 
1:2 line for the anorthite dissolution (Eq. 3) and the 1:3.4 line 
for the augite weathering (Eq. 4) in the calcium: bicarbonate 
bivariable plot, whereas an excess in bicarbonate is observed 
with respect to calcium-rich plagioclase dissolution on a molar-
to-molar relation according to the dissolution reactions:

(3)
CaAl
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Si
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O
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2
+ 3H

2
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Al
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Si

2
O

5
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(kaolinite) + Ca

2+
+ 2HCO

3

−

The UC1 and LC samples lie slightly above the 4:1 line 
for pyroxene (hypersthene) dissolution (Fig. 8a), showing 
a major dissolution from ferromagnesian minerals, based 
on Eq. (5):

In Fig. 8b, samples from UB and LB lie below the 1:1 line 
of calcium:sodium for the dissolution of calcium-sodium 
plagioclases (i.e., from andesite to oligoclase), indicating an 

(4)

(

CaMg0.7Al0.6Si1.7
)

O6(augite) + 3.4CO2 + 4H2O →

0.3Al2Si2O5(OH)4 (kaolinite ) + Ca2+ + 0.7Mg2+ + 3.4HCO3
−
+ 1.1H4SiO4(silicic acid)

(5)

2CaMgFeAl2Si3O12 (hypersthene) + 8CO2 + 0.5O2 + 15H2O →

2Al2Si2O5(OH)4 (kaolinite) + 2Fe(OH)3 + 2Ca2+ + 2Mg2+ + 8HCO3
−
+ 2H4SiO4
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excess of calcium probably from calcium-rich plagioclase 
dissolution (anorthite) or anthropogenic sources, while UC2 
and LC samples fell above, probably due to a major contri-
bution from sodium-rich plagioclases, as follows (Eq. 6):

In Fig. 8c, samples from UB and LB fell around the 0.7:1 
line for magnesium:calcium ratio for augite dissolution, 
whereas Colima samples lie significantly to the right from 
the augite and fall closer to the general dissolution line for 
pyroxenes, indicating significant contribution from this min-
eral according to Eq. (7):

(6)
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2
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2
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3

−
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4
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4
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2
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2+

+Mg
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+ 4HCO
3

−
+ 2Si(OH)4

In the biplot of calcium vs. sulfate (Fig. 8d), some samples 
from deep wells and others close to the Barva volcano in UB, 
UC1, and LC lay to the right of the 1:1 line for anhydrite. In 
contrast, LB and UC2 samples lay far below, indicating the 
low presence of sulfate-rich minerals to calcium. Samples from 
LB1, LB2, and UC2 showed high correlations between calcium 
and sulfate (Fig. 8d). Figure 8b–d also suggests a deficit in cal-
cium in UC1 and LC with respect to the mineral dissolution.

Hydrogeochemical relations of Ca2+/(Ca2+ + SO4
2–) and 

Mg 2+/(Mg2+ + Ca2+) with high molar ratios (> 0.5) denote 
the importance of calcium-rich plagioclase and ferromagne-
sian minerals weathering, respectively (Locsey et al. 2012). 
High ratios of Ca2+/(Ca2+ + SO4

2–) were found in most of the 
samples, while the mean values are higher in LB1, LB2, and 
UC2 (from 0.88 to 0.90), compared to UC1 and LC (from 
0.66 to 0.70). High Mg2+/(Mg2+ + Ca2+) ratios were observed 
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only in 54 and 92% of samples in UC1 and LC, respectively, 
while mean values are also higher in these flow paths.

Ion‑exchange processes

Figure  8e shows samples from UB, LB, and UC2, at 
higher elevations, located in the negative part of the 
CAI-1 and CAI-2 diagram, and samples at lower eleva-
tions in the positive part of the plot. To verify the impor-
tance of ion exchange, the diagram [Na+ + K+ – Cl–] 
vs. [Ca2+ + Mg2+ – SO4

2 – HCO3
–] showed slopes from 

–1.15 to –1.29 in LB2, UC1, and LC, relatively close to 
–1 (Fig. 8f). In contrast, the slopes in UB, LB1, and UC2 
clearly deviated from –1 (–0.58, –2.7, and 0.7, respec-
tively; Fig. 8f). Additionally, low molar ratios (<0.5) 
of calcium/bicarbonate might indicate cation exchange 
(adsorption of calcium and magnesium and release of 
sodium) or bicarbonate enrichment due to silicate weath-
ering, while higher molar ratios may indicate an excess 
of calcium and magnesium from other sources, e.g., due 
to reverse ion exchange (Drever 1997; Hounslow 1995). 
From 87 to 100% of the samples in UB, LB1, and LB2 
exhibited high molar ratios (>0.5), with LB1 showing the 
higher mean value (0.87). A lesser percentage, approx-
imately 67% of samples, showed a high molar ratio in 
UC1. Conversely, low molar ratios (<0.5) were observed 
in 83% of all samples in LC.

Mineral saturation indexes

The silica in the 53 samples employed to estimate the 
saturation indexes (SI) ranged from 15.5 to 107.2 mg/L 
(Table S5 of the ESM). Groundwater is enriched with 
silica (Table S5 of the ESM), particularly during the dry 
and early wet season, resulting in most samples being 
oversaturated in all aquifers (SI from –0.75. to 1.2) with 
respect to silicate minerals, including tridymite (Fig. 9a), 
quartz (Fig. 9b), chalcedony, cristobalite (slightly lower 
than for chalcedony), and coesite, and slightly undersatu-
rated for SiO2 (am) (Table S5 of the ESM). The SI in the 
Barva and Colima groundwaters increased close to equi-
librium with respect to calcite (Fig. 9c), dolomite, arago-
nite, and magnesite minerals (Fig. S4a–d of the ESM) 
towards the lower basin, particularly in LC, while one 
sample in RN09 showed saturation with respect to dolo-
mite (Fig. S4a and Table S5 of the ESM). Partial pres-
sures for dissolved CO2 exhibited higher values towards 
the lower basin (Fig. 9d), while negatively correlated to 
pH (Fig. S4e of the ESM) and positively correlated to 
calcium (Fig.  9e). Negligible correlation coefficients 
between fluoride and calcium in all aquifers and flow 
paths (from 0.01 and 0.46) were found.

Discussion

Seasonal variation

Statistical analyses of samples collected every 3 months for 
5 years suggested that seasonality may not be a major control 
of groundwater chemistry during the study period since no sig-
nificant differences were found between dry and wet seasons 
per site or per aquifer. However, higher site-specific CV in the 
shallower UB than sites from other aquifers suggest a more 
important seasonal variation in the uplands (Fig. S3 of the 
ESM). The lesser hydrochemical variability within sampling 
sites from LB and Colima aquifers indicates the occurrence of 
important resilience to temporal variations in recharge, typi-
cal of larger flow systems (Clark 2015). These conditions are 
especially evident in LC aquifer, being the only one showing 
no significant seasonal differences in any parameter.

Conversely, higher physical-chemical and hydrochemical 
variability in UB groundwaters reflects lower inertia in the 
recharge zones, where flows may be shallower and shorter 
and, therefore, more dependent on seasonality (Clark 2015), 
despite the similarities between dry and wet seasons within 
each sampling site. The hydrochemical temporal variation 
in UB agrees with the seasonal fluctuations in the water 
table, larger than 5 m, described by Foster et al. (1985) and 
Foster (1993) for Barva aquifer. However, Salas-Navarro 
et al. (2019) described a “damping effect” based on the 
minor temporal variations in daily and weekly isotopic com-
position in two springs above 2,200 m asl in UB, compared 
to more considerable variations in rainfall composition. EC 
remained close to the mean in Flores Spring, showing no 
relation to the seasonal pattern in precipitation or volumet-
ric discharge, while the opposite was observed in Sacra-
mento Spring at higher altitude. In deeper Colima aquifers, 
Foster et al. (1985) and Foster (1993) found slight or no sea-
sonal variations in groundwater levels due to the buffering 
effect caused by the high storage capacity of the interbed-
ded tuffs, which contributes to steady recharge rates. This 
coincides with the observations of Vega-Arce (2019), who 
conducted a study using groundwater level data from 2013 
to 2018 in 12 wells in the study area and found no seasonal-
ity in all the seven deep wells that captured a mixture of UC 
and LC or exclusively LC.

Discriminant model

The discrimination between the two subgroups of samples 
within the LB, i.e., LB1 and LB2 flow paths, and the UC, i.e., 
UC1 and UC2 flow paths observed in the PCA (Fig. 3a), vali-
dated the DA model due to the separation of the group cen-
troids and their confidence circles on the factor axes (Fig. 3b). 
The smaller distance between the LB2 and UC2 centroids in 
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the discriminant factor space, even smaller than the distance 
between LB1 and LB2, evidenced high similarities in their 
chemical characteristics, which are more influenced by nitrate 
and calcium variables. The correct classification of most train-
ing and validity samples denotes the predictive capacity of 
the DA model to sort preclassified groundwater samples such 
as in other studies carried out in volcanic aquifers (Barzegar 
et al. 2019; Panagopoulos et al. 2016). Thus, the DA pro-
vided a validated model to classify old and new samples 
from the Barva and Colima multiaquifer system as a practical 
tool for the selection of sampling sites representative of the 

hydrogeochemical conditions of each aquifer along preferen-
tial flow paths and their proper individual characterization in 
terms of the natural and anthropogenic processes.

Hydrogeochemical evolution and mixing 
of groundwater

The PCA, Stiff, bivariable plots, and Piper diagrams in Figs. 3a, 
6 and 7 and Figure S1 of the ESM showed a substantial spa-
tial geochemical evolution in the studied aquifers. In LB2 and 
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UC, the mineralization increases as groundwater travels from 
the recharge areas towards the lower zones of the basin, with 
longer flow paths in a NE–SW direction. LB1 increasing min-
eralization is observed if the UB samples are considered as 
pertaining to this flow path, representing its recharge chemi-
cal signal. In UC and LC, longer transit and residence times 
may explain higher contents in major ions, except for calcium. 
However, in LC, major constituents decrease as groundwater 
progressively approaches the lower zones. Although, several 
geochemical processes may cause some mineral species to 
decrease in ion content, the LC samples approach similar con-
centrations to the observed concentrations in LB and UC2 as 
the water approaches the discharge zone near (RN15), in terms 
of chloride, sodium, magnesium, and sulfate (Figs. 6c, d and 
7b,  c). This may suggest a groundwater mixing pattern from 
the overlying formations. In total, three potential groundwater 
mixing processes are observed in the PCA (Fig. 3a) and several 
hydrochemical scatter plots (Figs. 7e, f and 8a–d), as follows:

1.	 UB recharging water into LB, since samples from LB 
continued to follow the chemical evolution trend of UB. 
The PCA showed that the LB sampling sites at higher 
altitudes are adjacent to the samples from UB, in the 
negative section of F1 and F2, while the remaining sam-
ples are positioned in the positive section of F1 and F2, 
reflecting a spatial variation of groundwater hydrochem-
istry from the preferential recharge zone to lower zones 
in the basin. The vertical groundwater movement from 
UB towards underlying LB was also proposed by Protti 
(1986) and BGS/SENARA (1988).

2.	 LB2 probably percolating into UC2. The UC2 samples 
falling adjacent or among the LB2 samples in the F1 and 
F2 plot for the PCA and in most of the hydrochemical 
biplots suggest the mixing of groundwaters probably due 
to the vertical movement of water from overlying LB2.

3.	 LB2 and UC2 percolating into LC as groundwater 
approaches the discharge zone towards site RN15. 
Approaching the discharge zone, the hydrochemistry is 
gradually becoming more similar to that of UC2 and 
LB2 (Fig. 8a–d), evolving from Mg2+ – HCO3

– towards 
Ca2+ –  Mg2+ – HCO3

– facies. This indicates a potential 
flow from these overlying aquifers as the water flows 
in an E–SW direction. Although their permeability is 
low, groundwater may vertically move through the tuffs 
and ignimbrites of Tiribí and Puente Mulas formations 
(Arias-Salguero et al. 2006; BGS/SENARA 1988; Reyn-
olds-Vargas and Fraile-Merino 2009).

Mineralization due to water–rock interactions

In the Barva and Colima aquifers, the dissolution of CO2 
might enhance the contents of bicarbonate, which is the 

predominant ion in the study area. Elevated CO2 on Barva 
and Colima can originate from dissolution in the rain 
recharging the aquifer, CO2 released in the soil during 
organic matter decomposition, and degassing due to active 
volcanism and hydrothermal activity, as observed in the 
Central Volcanic Cordillera (Aiuppa et al. 2014). Dissolu-
tion of CO2 releases H2CO3 and bicarbonate, according to 
Eqs. (8) and (9):

The production of H2CO3 may explain the decline in pH 
values with increasing CO2 in Barva and Colima samples (Fig. 
S4e of the ESM). Since H2CO3 accelerates the weathering of 
aluminosilicate minerals and, thus, bicarbonate dissolution 
(Kim et al. 2020, Mechal et al. 2017, Mgbenu and Egbueri 
2019), water–rock interactions may be responsible for most 
of the increasing contents of bicarbonate along the Barva 
and Upper Colima flow paths (Fig. 7a–c), and the increase of 
calcium with increasing CO2 (Fig. 9e). However, the excess 
of bicarbonate with respect to the dissolution of anorthite 
(Fig. 8a), the predominant mineral in Barva and Lower Colima 
formations, may indicate additional sources. Although the 
incongruent dissolution of albite, hypersthene, and pyroxene 
release more bicarbonate per mol of calcium than that of anor-
thite, the proportion of these minerals in the Barva and Colima 
Formation is lower (0–9%, Table S1 of the ESM). Other pos-
sible sources related to anthropogenic activities may be further 
evaluated, e.g., the percolation of wastewaters, particularly due 
to the widespread use of septic tanks (AyA 2016).

The increase in bicarbonate and major cations along the 
LB and UC flowpath is mainly driven by the weathering of 
aluminosilicates, enhanced by the presence of CO2 and the 
further production of H2CO3. The correlations found in the 
diagram of [calcium + magnesium + sodium + potassium] 
vs. [bicarbonate] (Fig. 7e) indicate that bicarbonate is the 
balancing anion, suggesting a common origin related to 
the hydrolysis of silicate minerals, particularly in the upper 
basin. In volcanic aquifers in Ethiopia and Mexico, Haji et al. 
(2021), Mechal et al. (2017) and Morán-Ramírez et al. (2016) 
obtained similar correlations in the diagram of [calcium + 
magnesium + sodium + potassium] vs. [bicarbonate], which 
lead to the conclusion that silicate hydrolysis was the primary 
hydrochemical process responsible for the increase in bicar-
bonate and major cations along the flow paths. In Barva and 
Colima, the apparent importance of bicarbonate as a balanc-
ing anion decreases along the flow paths due to higher con-
tents in nitrate and chloride, in the case of LB and UC2, and 
to a more elevated chloride and sulfate content in UC1 and 
LC, hindering the evidence of a common origin, e.g., silicate 
weathering, of bicarbonate and major cations.

(8)CO2 + H20 → H2CO3

(9)H2CO3 → H+
+ HCO3

−
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The chloride vs. bicarbonate/chloride biplot (Fig. 7f) 
showed larger transit times in LB and UC as chloride 
increases and the relative importance of bicarbonate to chlo-
ride decreases. This general pattern of increasing salinity 
might reinforce the hypothesis of LB and locally uncon-
fined UC recharging preferentially in the upper zone, where 
rainfall is more abundant. However, in LC, more significant 
transit and residence times are represented mainly by the 
chemical characteristics in RN09 since groundwater seems 
to experience a mixing process towards the discharge zone 
in RN15, probably due to percolation from overlying aqui-
fers, causing the lowering of chloride concentration along 
the flow path.

The water of the shallow and perched UB aquifer exhibits 
the typical hydrochemical evolution of young groundwaters 
with slight but nonsignificant seasonal chemical variations. 
As it infiltrates into LB and travels through the assessed 
flow paths, the water exhibits hydrochemical characteris-
tics corresponding to older groundwaters, with lesser sea-
sonal variability, compared to UB. Higher calcium contents 
were found in samples in the discharge zone of the Barva 
aquifer compared to those in Colima (Figs. 7a–d and 8a–d), 
probably due to the dissolution of the basaltic-andesitic and 
andesitic rocks in the Barva Formation. This observation 
coincides with high proportions of calcic feldspars, mostly 
anorthite (44–80%), reported by Rojas et al. (2017) and 
Arredondo-Li and Soto (2007), given that mafic or basic 
rocks, such as basalts, exhibit calcic rather than sodic feld-
spars and higher ferromagnesian mineral contents. However, 
additional calcium in LB may also be related to its percola-
tion from limed agricultural fields or through wastewater 
infiltration due to the widespread use of septic tank drainage 
systems in the study area. The contribution of calcium from 
anthropogenic sources requires further examination.

The low concentrations of sulfate in LB samples may 
correspond to the reduced abundance of these ions in the 
silicate rocks (Custodio and Llamas 1983) and, thus, sulfide 
oxidation is a nonsignificant process. The nonaltitudinal dis-
tribution of samples with higher sulfate and the moderate 
correlation between sulfate and temperature may suggest 
a volcanism-related origin of the sulfate only in samples 
nearby the Barva crater (UB samples) and from deeper 
aquifers (UC2 and LC). Sulfur-rich mineral deposits may 
occur around fumaroles and in the proximity of deep veins in 
andesitic stratovolcanoes due to active volcanism (Zimbel-
man et al. 2005). However, these minerals are not described 
in the study area; moreover, the general oxidant conditions 
of groundwater, due to the elevated DO and ORP values, 
may prevent the occurrence of major redox reactions to alter-
ing the water chemistry in the studied aquifers.

The hydrogeochemical characteristics in UC1 and LC, 
with higher bicarbonate, chloride, magnesium, sulfate, and 
sodium (Figs. 5, 6, and 8a–d; Fig. S2 and Table S4 of the 

ESM), might broadly correspond to that commonly observed 
in mineralized groundwaters of longer residence time (Cus-
todio and Llamas 1983). Furthermore, groundwater in UC1 
showed the typical chemical composition of deep flow paths, 
with longer flow paths and lesser groundwater alteration by 
mixing processes, whereas UC2 flow path exhibited mixing 
with groundwater from the LB2. The LC showed deep and 
older groundwater characteristics solely at the easternmost 
sites (RN09, 37 and 47), while mixing with UC2 occurs as 
the groundwater moves westward.

In UC1 and LC, sodium, potassium, and bicarbonate 
enrichment might be the result of groundwater moving 
through acidic fractured volcanic rocks such as pumice, ign-
imbrite, ash, and trachyte (Mechal et al. 2017). Felsic or acid 
rocks contain more than 66% silica, potassium and sodium-
rich feldspars and plagioclases, and low Fe–Mg contents. 
Since the lavas in Colima Formation, classified as andesites 
and trachyandesites, contain more alkaline feldspars and 
higher Na2O and K2O content than the Barva Formation 
(Kussmaul 1988), water–rock interactions may be responsi-
ble for the major contents in sodium and potassium in LC. 
Particularly, further enrichment in Colima might have also 
been obtained due to the infiltration of groundwater through 
the acidic ignimbrites, tuffs, and pumice-rich layers of the 
overlying Tiribí Formation (BGS/SENARA 1988). Tiribí 
lithologies are acid, based on their SiO2 content (from 55.1 
to 69.2 wt%; Hannah et al. 2002), and comprise andesites, 
trachyandesites, and dacites (Pérez et al. 2006) and elevated 
contents of Na2O and K2O (Kussmaul 1988). Higher mag-
nesium concentrations in UC1 and LC, compared to LB, 
could be related to longer flow paths and residence times 
and consequent hydrolysis of the ferromagnesic minerals, 
i.e., hypersthene, augite, olivine. Lower calcium content in 
Colimas, even when the residence time of groundwater in 
the Colima aquifers is more significant than in LB (Sánchez-
Murillo et al. 2022), and despite the presence of calcium-rich 
plagioclases (anorthite), might be the result of ion exchange 
processes (see section ‘Ion-exchange processes’) and lower 
vulnerability to anthropogenic sources.

Nitrate contamination

Mean values of nitrate in LB and UC2, i.e., 15.3 and 13.1 
mg/L as NO3

– (Table 5), indicate the alteration of the water 
quality in these aquifers. In addition, multivariate statis-
tical analyses also showed that the LB and UC2 samples 
were mainly related to the nitrate and calcium variables, 
suggesting contamination due to a higher vulnerability to 
anthropogenic activities in the Barva aquifer and the inter-
connected UC2. Nitrate, commonly considered a minor ion, 
is the second major anion in LB and UC2, implying pollu-
tion from anthropogenic sources and possible groundwater 
infiltration from LB to UC2, as preliminarily observed by 
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Madrigal-Solís et al. (2017), due to leaching of N-fertilizers 
and wastewaters from septic tank systems (Reynolds-Var-
gas et al. 2006). Groundwater infiltrating from LB2 to UC2 
and UC2 to LC represents a pollution hazard for the deeper 
Colima aquifers, in terms of nitrate and other organic and 
inorganic pollutants. This topic is the subject of an expanded 
article on groundwater contamination.

Ion‑exchange processes

This study shows normal and reverse ion exchange as plau-
sible nondominant processes in the Barva and Colima aqui-
fers. The results derived from estimated base exchange indi-
ces CAI-1 and CAI-2 (Fig. 8e) suggest normal ion exchange 
(calcium and magnesium adsorption by clays and potassium 
and sodium released into groundwater) near the preferen-
tial recharge zone progressively evolving into a reverse ion 
exchange process (potassium and sodium adsorbed and cal-
cium and magnesium released) in LB and UC2. Most samples 
from UC1 and LC are located on the negative side, indicating 
normal ion exchange, which might partially explain the lower 
calcium concentration in these groundwaters. Negative CAI-1 
and CAI-2 values were also reported in a volcanic aquifer by 
Haji et al. (2021), accompanied by higher sodium/calcium 
ratios in deeper groundwater due to cation exchange.

Furthermore, the relation of [Na+ + K+ – Cl–] vs. [Ca2+ 
+ Mg2+ – SO4

2–− HCO3
–] showed that LB2, UC1, and LC 

were the only flow paths with slopes close to –1 (Fig. 8f), 
suggesting that cation exchange may influence their water 
quality substantially, according to the criteria by Fisher and 
Mullican III (1997). Therefore, particularly higher sodium 
contents and lower calcium in LC (Fig. 5) may result from 
calcium adsorption onto clay minerals and sodium released 
into groundwater; nevertheless, as the sodium contents in the 
LC are substantially higher, an additional amount of sodium 
is expected to derive from the weathering of sodium-rich 
silicate minerals. As observed in LC, Fenta et al. (2020) 
also found increasing sodium and decreasing calcium with 
depth in volcanic aquifers in Ethiopia. However, in contrast 
to LC, the slope observed by these authors in the relation of 
[Na+ + K+ – Cl–] vs. [Ca2+ + Mg2+ – SO4

2—HCO3
–] was far 

from –1, concluding that higher sodium was primarily due 
to the weathering silicate minerals and, to a lesser extent, to 
cation exchange. Conversely, in UB, LB1, UC2 flow paths, 
slopes deviated from –1 denote that cation exchange is not 
a dominant process, although it may occur to some extent.

In addition, most of the samples in LB and UC2 showed 
high calcium/bicarbonate molar ratios (>0.5), indicating the 
possible occurrence of a reverse ion exchange process or 
additional sources of calcium, according to Drever (1997) 
and Hounslow (1995). In contrast, low molar ratios in LC 
may indicate adsorption of calcium and magnesium due to 
normal ion exchange in 83% of the samples.

Although normal ion exchange might partly explain the 
significantly higher sodium and lower calcium contents in 
Colima, the samples also exhibited an excess of magnesium 
with respect to calcium along the dissolution line of augite 
and pyroxene (Fig. 8c), which could hinder the importance 
of the proposed ion exchange process. When assuming that 
normal ion exchange is involved, both calcium and magne-
sium would be adsorbed on the clay surfaces and, thus, low 
concentrations in groundwater would be expected. However, 
the lower holding capacity of magnesium by the negative 
charges on the clay’s surface and its higher solubility in 
water, compared to that of calcium (Custodio and Llamas 
1983) may cause calcium to be adsorbed to a greater extent.

Furthermore, all samples from Barva and Colima showed 
high Ca2+/(Ca2+ + SO4

2–) ratios (>0.5), indicating that the 
source of calcium could be related to plagioclase feldspars, 
as observed by Locsey et al. (2012) in basaltic groundwaters 
in Australia. However, only samples in UC1 (54%) and LC 
(92%) showed high Mg2+/(Mg2+ + Ca2+) ratios, reaffirming 
the larger importance of the weathering of ferromagnesian 
minerals in the Colima compared to Barva aquifer. Enrich-
ment in magnesium with respect to calcium in volcanic aqui-
fers due to the weathering of mafic minerals, such as augite, 
was also found by Edmunds et al. (2002) in Mexico City. 
Mechal et al. (2017) also found limited calcium in ground-
waters interacting with acidic volcanic rocks due to the lack 
of plagioclase, olivine, and pyroxene, such as ignimbrite, 
pumice, tuff, ash rhyolite, and trachyte.

Saturation indexes

According to the SI, mineral precipitation may not explain 
the lower calcium contents in UC and LC, since no evi-
dence for the precipitation of aragonite, calcite, or dolo-
mite was found; most samples were undersaturated with 
respect to their solid and gas phases and only some sam-
ples approached equilibrium in Barva and Colima (Fig. 9c 
and Fig. S4 of the ESM). In addition, relatively high CO2 
partial pressures (ranging from –2.97 to –1.47, Table S5 of 
the ESM) diminish the probability of calcium precipitation 
since precipitation of CaCO3 is favored in natural waters 
with low dissolved CO2 conditions (Liñán et al. 2021; Loc-
sey et al. 2012). High CO2 partial pressures release H2CO3 
through Eq. (8), shifting Eq. (10) to the right, increasing the 
dissolution of calcium-rich minerals. In contrast, low CO2 
partial pressures move Eq. (10) to the left, favoring calcite 
precipitation, as follows:

Furthermore, low correlations between fluoride and cal-
cium in all aquifers also revealed the low possibilities of fluo-
rite precipitation and subsequent calcium precipitation. Thus, 

(10)CaCO3 + H2CO3 ↔ Ca+2 + 2HCO3
−
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lower calcium concentrations in LC with respect to the dis-
solution of pyroxenes and plagioclases and compared to LB 
may be more related to normal ion exchange process and to 
possible lesser calcium contents in LC andesitic lithologies.

Conclusions

The present study provided the basis for understanding the 
natural and anthropogenic processes governing groundwa-
ter quality in the UB, LB, UC, and LC aquifers. This was 
achieved by (1) developing a discriminant model to classify 
samples according to the primary captured aquifer and flow 
path and (2) assessing the hydrochemical processes in each 
flow path.

The proposed discriminant model identifies the princi-
pal aquifer from which old and new samples are collected, 
enabling the selection of adequate sampling sites for the 
assessment of water quality and further in-depth investiga-
tions in four aquifers of a fractured multilayered volcanic 
system. The model minimizes the interpretation problems 
when using mixed water samples from various aquifers or 
undetermined aquifers, improving the present and future 
investigations into natural geochemical processes, pollution 
processes, recharge zones, residence times, length of flow 
paths, and subsequently, specific management plans for UB, 
LB, UC, and LC. The combination of PCA and DA in devel-
oping a discriminant model may apply to other multiaquifer 
systems of diverse lithological origins.

This study revealed that weathering of aluminosilicate 
minerals is the primary hydrogeochemical process governing 
groundwater quality through silicate hydrolysis in the Barva 
and Colima aquifers, whereas natural and anthropogenic 
processes distinctly modify the water chemistry in each 
aquifer and flow path. Moreover, hydrochemical and statis-
tical analyses supported three vertical mixing processes: UB 
partially recharges the LB, the LB2 percolates towards the 
underlying UC2, and UC2 infiltrates into LC as groundwater 
travels westward.

In the Barva aquifers, the hydrochemical evolution can 
be described as follows (Fig. 10): (1) younger CO2-enriched 
groundwater in UB in the recharge zones releases H2CO3 
and bicarbonate, (2) as groundwater partially recharges the 
LB and travels towards lower zones, the acid accelerates the 
weathering of aluminosilicate minerals in andesitic-basaltic 
rocks, producing further groundwater enrichment in terms 
of bicarbonate, calcium, silica, and other major ions, (3) 
nitrate increase as groundwater travels underneath agricul-
tural fields and urban areas lacking sewage systems due to 
the leaching of fertilizer and wastewaters.

Although the study has not covered the complete flow 
paths in the UC and LC aquifers, the evolution can be 

described as follows (Fig. 10): (1) in the recharge zones 
(when unconfined), groundwater is bicarbonate and H2CO3 
enriched due to dissolved CO2 inputs from rainfall, organic 
matter decomposition, and dissolution of CO2 from volcanic 
activity, (2) water–rock interactions enrich groundwater, 
especially in bicarbonate, silica, magnesium and, to a lesser 
extent, in calcium, (3) a large proportion of the calcium is 
adsorbed onto clays, (4) sodium and bicarbonate progres-
sively increase due to the weathering of sodium-rich feld-
spars and the percolation through felsic volcanic rocks such 
as andesitic lavas, tuff, ignimbrite, ash, and pumice in Barva 
and Tiribí formations, while sodium is also released due to 
normal cation exchange, particularly in LC, and (e) potas-
sium contents remain low even in the presence of potassium-
rich plagioclases, since a portion may be irreversibly bound 
to clay minerals. The hydrochemical characterization along 
the UC1 flow path and that observed at the highest eleva-
tion site in LC is most consistent with that of typical, more 
mineralized, deep-circulating groundwaters with minimal 
seasonal chemical variations.

Recommendations and perspectives 
for future research

The enhanced knowledge of the hydrodynamic and hydro-
geochemical behavior of individual aquifers and flow paths 
in a complex multilayer volcanic scenario may improve the 
delineation of management approaches and policies for pro-
tecting groundwater quality and quantity in the northwestern 
sector of the Central Valley. Shallow and moderately young 
groundwaters from Barva aquifers, exhibiting direct infiltra-
tion, a more significant seasonal chemical variability, and 
higher nitrate contents, present higher vulnerability to the 
leaching of contaminants of anthropogenic origin compared 
to the Colima aquifers. Given that the contamination of the 
Barva aquifers also affects the quality of the Colima aquifers, 
management strategies should prioritize the protection of 
Barva. Nevertheless, for the adequate management of each 
groundwater reservoir, future investigations should also 
focus on the hydrogeochemical processes of anthropogenic 
origin controlling water quality in both Barva and Colima 
aquifers individually.

Groundwater management should include general and spe-
cific protection strategies for each hydrogeological unit, con-
sidering that water quality in both Barva flow paths is distinctly 
affected by environmental pressures, the interaquifer connec-
tions, e.g., between LB2 and UC2, and between UC2 and LC 
in the southwestern section, and the subsequent percolation of 
contaminants from Barva to Colimas aquifers. In addition, to 
further improve the understanding of seasonal variability of the 
UB and LB, it is critical to study chemical and isotopic water 
quality for periods longer than 5 years, given the recurrence of 

2336 Hydrogeology Journal (2022) 30:2315–2340



1 3

climate-altering patterns such as El Niño-Southern Oscillation 
(ENSO). Finally, it is also recommended to include additional 
UC and LC monitoring sites, mainly to the north and east, to 
evaluate more extensive flow paths and recharge zones, which 
are poorly known for the Colima aquifers.
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